
ABSTRACT

DESIGN AND IMPLEMENTATION OF THE uLab
REMOTE HARDWARE DESIGN LABORATORY

Timothy Raymond Pearson, M.S.
Department of Electrical Engineering

Northern Illinois University, 2013
Reza Hashemian, Director

This thesis details the design, construction, and operation of a new type of remote

hardware design laboratory, based on Free and Open Source Software (FOSS). The need for

such a remote laboratory is examined, and the new laboratory is put into historical context within

the computing field. Prior and current remote laboratories are compared and contrasted with the

new laboratory, and the advantages and disadvantages of each are discussed. Detailed

information on the design of each of the laboratory's three main components is provided, along

with the general reasoning that produced each component's specific architecture. Integration

with test equipment and laboratory hardware is discussed, and scalability and reliability concerns

are addressed throughout, with methods given to mitigate potential risks. Finally, a brief

discussion on continuance of this open-source laboratory project is given, along with a statement

highlighting the final results of this research project.

NORTHERN ILLINOIS UNIVERSITY
DE KALB, ILLINOIS

MAY 2013

DESIGN AND IMPLEMENTATION OF

THE uLab REMOTE HARDWARE

DESIGN LABORATORY

BY

TIMOTHY RAYMOND PEARSON
©2013 Timothy Raymond Pearson

A THESIS SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFULLMENT OF THE REQUIREMENTS

FOR THE DEGREE

MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL ENGINEERING

Thesis Director:
Reza Hashemian

ACKNOWLEDGEMENTS

Many individuals have contributed resources that have made this thesis possible, and I am

grateful for their assistance. Special thanks go to Dr. Reza Hashemian and Northern Illinois

University for their significant investment in the server cluster on which this laboratory runs. I

also would like to thank those who have put up with my loud, power-hungry server farm at my

residence over the years; this work would not have been possible without their understanding and

patience. My editor, Janette, who has volunteered long hours ensuring that I obey the rules of

the English language, no matter how arcane they may seem, deserves honorable mention as well.

Finally, my gratitude goes to the thousands upon thousands of Free and Open Source Software

(FOSS) developers and academics who have, over time, built a collection of open-source

software and unencumbered documentation solid and comprehensive enough to support complex

systems, such as this laboratory. I stand upon the shoulders of giants and can see farther1–and

accomplish much–due to their prior work and their willingness to share not only their work but

also any fundamental knowledge they gained.

1. With apologies to Sir Isaac Newton

TABLE OF CONTENTS

Page

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

PREFACE .. viii

Chapter

1. INTRODUCTION .. 1

Hardware Design Laboratories ... 1

Motivation of Research ... 1

2. BACKGROUND .. 4

Origins of Remote Computing .. 4

The Personal Computer Revolution .. 6

Return to Centralized Services .. 7

The Rise of Free and Open Source Software (FOSS) ... 10

Advantages of Linux and FOSS ... 13

Overview of Field Programmable Gate Arrays .. 14

Past and Present Remote Laboratories .. 15

3. uLab DESIGN AND IMPLEMENTATION ... 19

Design Goals and Laboratory Components .. 19

Infrastructure ... 20

Centralized User Management and Authentication 20

DNS and DHCP .. 27

Persistent Data Storage and Diskless Nodes ... 28

Configuration and Session Management Database 30

Public Network Interface .. 31

Final Design .. 31

Scalability and Reliability ... 32

Terminal Services .. 33

Desktop Environment ... 36

Software Packages .. 39

User Data Storage ... 40

Final Design .. 41

Scalability and Reliability ... 42

uLab Remote Hardware Access System ... 43

Authentication, Authorization, and Encryption 44

Client Design .. 46

Server Design .. 47

Protocol Design ... 49

Test Equipment Interface .. 53

FPGA Viewer Part ... 56

FPGA Programmer Part .. 59

Final Design .. 62

iv

Chapter Page

Scalability and Reliability ... 63

Miscellaneous Services ... 64

4. DISCUSSION AND SUMMARY .. 66

Future Work .. 67

5. REFERENCES ... 74

v

Chapter Page

LIST OF TABLES

Table Page

1. Comparison of Remote Laboratory Features ... 17

LIST OF FIGURES

Figure Page

1. Major components of a generic uLab system .. 21

2. Realm controller service interdependency ... 25

3. Two of the realm management utilities utilized within the uLab system 26

4. Architecture of the terminal services component ... 37

5. A typical uLab FPGA development workspace .. 48

6. Hardware access protocol encapsulation for transmission over unsecured networks 51

7. The uLab oscilloscope frontend part, showing a high-voltage transient and the use of a

 zoom region ... 54

8. FPGA debug module internal structure .. 58

9. Single Spartan 6 hardware development pod ... 61

10. Internal structure of the uLab installation at Northern Illinois University 68

11. uLab installation at Northern Illinois University ... 70

PREFACE

Many years ago, my eyes were opened to the wide, new world of FPGAs via a public tour

of Northern Illinois University's hardware design laboratory, a world I previously thought to be

inaccessible to a mere student of integrated circuit design. Laboratories provide students of all

disciplines irreplaceable, hands-on interaction with devices and concepts that, until experienced

personally, are simply abstractions in a textbook–things not to be touched by mere mortals.

Understanding this, I have worked for many years to extend the transformative laboratory

experience to students both young and old, utilizing modern technology where possible and

inventing the rest where needed. In an era of fast computer simulations and Facebook, hands-on

interaction with real hardware has fallen by the wayside, considered an inconvenience by many

or, as one student put it, “the domain of technicians and not engineers.” My belief is that

engineers must straddle two worlds, both theoretical and practical, in an effort to create

meaningful new technologies that will better people's lives for years after their introduction. One

cannot properly innovate without a reasonable understanding of a particular technology from

many different perspectives; only after a particular technology has been observed, probed, and

characterized can our intuition take us to the next levels of form and function.

The remote laboratory described herein is my contribution to making real hardware and

design tools available in a convenient manner to all who are interested, regardless of location or

current degree of skill. To ensure that readers are able to clearly understand the underlying

ix

technology and factors driving the final architecture, I have organized this thesis in such a way as

to present the overall design goals of the laboratory, the available technologies at the time of this

writing, and the reasoning behind the design decisions that were made to advance the stated

goals. Less emphasis has been placed on the particular form of the laboratory as installed at

Northern Illinois University; while important to provide access to the hardware design resources

at the institution, and as an initial proof of concept, this particular implementation does not allow

the remote laboratory software to reach its full potential, which would require additional time

and resources. Nevertheless, this implementation is the first of its kind and will likely expand in

the future as interest and support grows.

The reader will note a thread of reliance on open systems throughout this work. This is

one of the most important contributions of this laboratory system to the state of the art; prior to

this work, the only major remote laboratory systems to utilize open source from the hardware to

the interface were severely lacking in features and capability. Unwilling to compromise on

either principles of freedom or functionality, I designed and implemented this laboratory system

to provide a modern, full-featured, open-source remote hardware design laboratory. The overall

system has been pretentiously dubbed the Universal Laboratory, or more conveniently, uLab; this

name is partially a pun on Debian (which claims to be the “Universal Operating System”) and

partially a reference to my goal of providing universal access to the hardware and software

needed to continue the advancement of science and engineering. For the good of mankind, the

information and tools required to dream up the next technological breakthrough must never be

restricted to a small subset of the population; history shows that true innovation tends to come

from unlikely places, and even with the breakneck pace of modern innovation, the smallest

x

players are sometimes the most influential. We, therefore, may ignore both history and the

potential contributions of a single individual only at our own great peril.

It is my hope that this laboratory, someday, and in some small way, may help a student

somewhere to realize his or her full potential, and that mankind may benefit from the subsequent

work of that individual. All who are involved in scientific research or the support thereof have

inherited this common responsibility: to share what we learn and to ensure that future

generations may build upon our work, just as we have built upon the work of our predecessors.

INTRODUCTION

Hardware Design Laboratories

A typical hardware design laboratory consists of several workstations and associated

hardware in an access-controlled room with rigidly scheduled laboratory dates and times. This

laboratory model inherently presents several drawbacks. One of the largest issues with this type

of laboratory is the low average utilization ratio; there normally are large portions of each day

that the laboratory is nearly or completely idle with no student access permitted. Another

drawback is a relatively short window for laboratory sessions, during which the students are

more focused on completing particular assignments within the allotted time frame than they are

on learning vital concepts via semi-structured, hands-on interaction with design tools and

hardware. Additionally, in many institutions, there are insufficient resources available to handle

simultaneous usage by all students within a particular laboratory period; this forces multiple

students to be assigned to a given workstation and further removes each student from hands-on

interaction with the design software and physical hardware.

Motivation of Research

The primary goal of this research is to obviate many of the issues associated with a

traditional hardware design laboratory, as well as to expand the ability of students to engage in

2

hands-on learning with a combination of physical hardware and industry-standard design tools.

Secondary goals include cost effectiveness, ease of access, and expandability of the laboratory

system to accommodate new technologies and custom laboratory equipment. Free and Open

Source Software (FOSS) will play a large role in achieving these goals, and also will help to

ensure reliability and scalability of the resultant design. To avoid software compatibility issues,

and to ensure that a wide variety of students are able to access the laboratory regardless of the

type of computing device they own, a full laboratory workspace will be made available to any

network-enabled device that supports the Remote Desktop Protocol (RDP), which is now a de

facto standard. This customizable workspace will present a wide array of engineering design and

simulation software, as well as the software required for physical hardware access, to the student

via a familiar and powerful Windows, Icons, Menus, and Pointer (WIMP)-based desktop

interface.

From an institutional perspective, this type of laboratory provides several distinct

advantages. By owning a central, homogeneous system that runs on server-grade hardware,

maintenance is simplified and downtime is reduced. Adding new hardware for a specific

laboratory becomes a simple matter of installing the additional resources in a proper location

with network access, and informing the central system of the new hardware's location and

purpose. It is no longer necessary to install copies of engineering design software on the general

purpose computers in a computer laboratory; students who are enrolled in hardware design

courses simply may connect to the laboratory if they wish to utilize the associated design

software. This keeps general purpose computing laboratory maintenance to a minimum; in some

cases, it even may be possible to replace the general-purpose computers found in such

3

laboratories with low-power thin clients connected to one or more central laboratory systems.

Another significant advantage of the new laboratory is that the students no longer have direct,

physical access to expensive and scarce engineering hardware, minimizing the risk of damage.

This new laboratory system can, therefore, be used to allow controlled, safe access to hardware

that may have been previously unavailable to most students due to damage and/or safety

concerns.

BACKGROUND

Origins of Remote Computing

Remote computing traces its origins to a time when general-purpose computers were

expensive and relatively rare. These early computers were also large, power-hungry machines,

requiring highly specialized building infrastructure to keep them operational [1]. While the

earliest forms of these machines utilized non-interactive, batch-oriented, input/output methods,

such as punched cards and teletypewriters, need for truly interactive access was growing. The

earliest dumb terminals, also known as “Glass TTYs,” became available in the late 1960s, in the

form of such machines as the Datapoint 3300 [2]. It would be several years before RAM became

inexpensive enough to allow the first intelligent terminals to be manufactured. These terminals

allowed less bandwidth to be used to show the same information that a dumb terminal could

display; this was due to the presence of a local processor that was capable of performing certain

limited display operations without direct, low-level involvement of the remote computer [3].

These types of systems can be considered the distant ancestors of modern terminal services,

which allow a user to use a Graphical User Interface (GUI), executing entirely on a remote

machine through the use of an appropriate thin client device [4].

A second critical development occurred even earlier, in 1957, with the introduction of the

concept of time sharing. Time sharing was first introduced as a concept by Bob Bemer in

Automatic Control [5], and would be successfully implemented on an IBM 704 later that year

5

[6]. The concept of time sharing exploits the fact that an individual user often presents “bursty”

demand to a given machine. This is because most interactive use patterns, such as word

processing, leave the machine idle between commands or even keystrokes, yielding a low

average utilization of the CPU. By allowing multiple users to utilize the same hardware, the

average utilization of the CPU increases with little noticeable effect in the machine's

interactivity, thus making maximum use of a scarce resource. A limit is eventually reached when

the average utilization of the CPU nears 100%; however, this merely sets an upper boundary on

the maximum number of simultaneous users and does not detract from the desirable efficiency

increase gained from implementation of the time-sharing concept.

By leveraging both the time-sharing concept and the existence of relatively inexpensive

terminals, new uses were found for computers that otherwise would have been impractical or

impossible due to the expense of a typical mainframe [7]. Over time, additional advantages of

this model were discovered, including high reliability, high resource efficiency, and relative ease

of maintenance; most of these advantages were inherited from the mainframes typically used to

drive this type of system, and others were inherited from the well-known administrative and

control advantages of centralized systems [8]. The concepts underlying both time sharing and

terminals remain in use to the present day, although in different forms and implementations. One

of the most popular forms of this model, as of this writing, is the Internet itself; many large

websites are served by expensive, dedicated server farms, analogous to mainframe computers,

while the client-side Web browser takes on the role previously played by intelligent terminals [9]

[10]. A lesser known, although important, implementation of this model is generally called

terminal services. In this system, a large number of graphical terminals are connected to one or

6

more central servers, with all application processing being done on the remote server. Given

sufficiently high link speed, a user of the terminal services should see little to no difference as

compared to usage of a local machine [11].

The Personal Computer Revolution

As faster and less expensive microprocessors were developed, the advantages of time-

sharing systems became less pronounced, while the disadvantages of the systems remained

profound. Time-sharing systems were considered somewhat unreliable because fluctuations in

the instantaneous number of users on such systems could drastically affect performance at any

given time [12]. A typical time-sharing system operated under the control of a single

organization, and, as such, presented several opportunities for abuse. Central control of a

computer system guarantees that the owner of such a system can deny access to any user for any

reason at any time. The central system provides a single point of failure and is not usually a

guaranteed service; therefore, its continued existence cannot be relied upon for any significant

period of time. On a more sinister note, a centralized system also can be used to hold users' data

hostage, possibly forcing users to pay an arbitrary fee for continued access to their own data.

Given these significant drawbacks, it is not surprising that the Personal Computer (PC)

revolution occurred as the price of minicomputers and workstations dropped low enough to

allow an average technically-minded individual to own his or her own computer. This, in turn,

encouraged a culture of unprecedented, widespread, low-level machine knowledge and freedom

to tinker; in this culture hackers wrote programs for the machines they owned and shared these

7

programs among members of various dedicated technical groups. One of the most widely known

and used products of this unique culture is Linux itself, originally developed by Linus Torvalds

on a custom-built 386 PC in order to address limitations he saw in MINIX [13]. Due to, in no

small part, individuals such as Torvalds, the years leading up to the introduction of the World

Wide Web saw explosive growth in new software and in expansion of tasks to which computers

could be applied. For the first time, the WIMP GUI was made available to users at home through

products such as the X Windowing System [14] and Microsoft Windows [15]; this, in turn,

fueled another wave of innovation as people found new uses for their computers. Interestingly,

for many years after widespread adoption of the GUI, existing communication links remained

insufficient, primarily due to a lack of both bandwidth and availability, to support the existence

of anything resembling the old mainframe/terminal model.

Return to Centralized Services

The first foundations for the return to the mainframe/client model were laid with the

introduction of the World Wide Web. Originally conceived as a means for anyone to be able to

author and edit shared documents across the world [16], the first implementation of HTTP only

allowed read-only access to documents when used outside of the commercially unsuccessful

NeXTSTEP operating system [17] [18]. Over time, as communication links improved and

broadband became available, people became more reliant on Internet access to a relatively small

number of major information sources, thus bringing centralized systems back into mainstream

usage for the first time since the introduction of the PC. After the introduction of the cellular

8

telephone, and subsequent development into the now ubiquitous smartphone, consumers have

embraced a return to the centralized architecture of the 1970s for many of the same reasons that

drove acceptance of the original time-sharing systems. Many consumers simply want a

lightweight, low-power device that, in exchange for a service fee, allows communication with

other users and access to various sources of information. Much like the mainframes of

yesteryear, these sources of information are large, dedicated server farms that would be

impossible to carry around in daily life [19]. Earlier, these consumers would have been forced to

purchase a PC to access these information and communication resources; now they are able to

obtain the same level of service via their smartphone. As a result of these changes, we fully have

entered a “cloud”-oriented, post-PC era, one in which the service model originally introduced

with mainframes and terminals is dominant once again.

Post-PC devices, while offering clear advantages in terms of human communication and

ready access to several types of information, nevertheless inherently possess several severe

drawbacks. Many post-PC devices, such as cellular telephones, rely on software which, under

United States copyright law, is licensed property [20], owned and controlled by the original

manufacturer, a software development firm, or, in some cases, even the carrier from whom a

person has purchased a telephone. Because most telephones, tablets, and other consumer devices

contain firmware which prevents the usage of unapproved software [21], under United States law

the consumer cannot legally use the device for any purposes other than those expressly permitted

by the device's legal owners and any active Copyright Office rules [22]. This has the effect of

drastically increasing barriers to entry for anyone who may wish to engage in hands-on learning

of application programming. If left unchecked, this unfortunate effect would tend to centralize

9

the power to develop new applications into the hands of a relatively small number of individuals,

ensuring that new generations of students would no longer have the advantage of being freely

able to tinker with and experiment upon their own general-purpose computing devices.

Fortunately, the cost of general-purpose computing hardware is still low enough to be

affordable by most individuals. This has allowed the open-source community to continue

development of new software in much the same manner as during the PC's golden age, albeit at a

slower pace than before, and also has served to offset many of the high barriers of entry into a

typical smartphone ecosystem. More recent developments include the repurposing of

semiconductors that were originally designed for smartphones in order to create a new breed of

inexpensive, general-purpose computers; developments like this create a climate in which future

generations will be able to, once again, learn about machine internals and gain direct, hands-on

experience with programming tools and hardware interfaces. One of the most prominent

examples of this type of computer is the Raspberry Pi [23], which, incidentally, plays a

significant role in driving down the cost of the new laboratory system.

Another result of the proliferation of post-PC devices is the push for post-WIMP GUIs,

primarily due to the fact that post-PC computers lack traditional input devices, such as a

keyboard and mouse. The differences between GUI types are substantial, and selection of the

appropriate GUI type is critical to ensure that the user can attain maximum productivity for a

given class of work. The WIMP GUI is a somewhat rigid paradigm that forces the user to be in

control of the machine at all times; that is, the machine generally will not perform any action that

was not previously commanded. Additionally, strong emphasis is placed on hierarchical file

systems, interface permanence, application consistency, and overall worker productivity [24].

10

By contrast, the post-WIMP GUI is designed primarily for information retrieval and

interpersonal communication, focusing strongly on searches for existing documents,

consumption of content, and brief but frequent communication with other individuals; therefore,

special emphasis is placed on computer prediction of the user's current activity, and proactive

assistance of the user in that task. Much of this technology is essential for smartphones and

tablets due to the low input/output bandwidth typically available between machine and user;

however, its usefulness and practicality on larger devices is currently a subject of intense debate

[25].

The Rise of Free and Open Source Software (FOSS)

Free and open source software plays a vital role in scientific and computing research [26],

enabling the creation of novel systems with state-of-the-art technology [27]; therefore, it is useful

to understand some of the history and culture that has shaped the open-source movement into the

form we rely on today. Early programmable computers were created with heavy influence from

professors working at universities; much of the design knowledge and computer software for

these machines was, therefore, shared openly with other researchers. A prominent example of

this paradigm was IBM's ACP airline reservation system. Written for the IBM/360 mainframe,

the source code was available for anyone to modify, improve, and share with other interested

parties [28]. Only later, once machine architecture had stabilized and relatively few computer

types were commercially available, would closed-source computer software such as UNIX and

VAX/VMX become practical.

11

The free software movement, as we know it today, traces its origins to the MIT Artificial

Intelligence Laboratory and the collaborative culture that existed in its hacker community before

that community's demise in the early 1980s [29]. Around this time, new computers were being

released with proprietary operating systems that could not legally be studied or modified by the

end user. As a result, a distinction now needed to be made between the older, traditional, open

software and the new, closed, licensed software; “free” and “open-source” became meaningful

terms at this point. Due, in part, to the refusal of some people, including Richard Stallman, to

relinquish their freedom of software development and modification, the open-source software

community was slowly restarted with the primary goal of creating a full-featured, open-source,

UNIX-compatible operating system. Interestingly, while Stallman set out to create a complete

UNIX-compatible operating system, the GNU project would, instead, become primarily known

for its userland tools, including the GNU Compiler Collection (GCC) used by many developers

and projects worldwide. To this date, the GNU project has not produced a GNU/HURD kernel

that is competitive with any major proprietary or open-source offerings [30]; however, it has

continued to produce and maintain core development tools and libraries.

Like the GNU project, Linux was born out of dissatisfaction with closed-source, or

otherwise restricted, operating systems. Linus Torvalds was a student when he first wrote a

small terminal emulator to overcome limitations in the restricted MINIX system that came with

his Intel 386 (i386) computer [13]. Later, this terminal emulator, which only ran on similar i386

machines, grew into a rudimentary POSIX-compliant kernel. In and of itself, this was not

particularly noteworthy, but what happened afterward introduced the world to a new

development model that was originally ridiculed as doomed to fail. Torvalds released the first

12

versions of Linux under a license that allowed modification if and only if the changes also were

made public, and he completely forbade sale of Linux in any form. After Linux was modified to

support swap to disk, its popularity began to increase, and Torvalds had to rethink his original

license. He was aware of the work of Stallman, and also aware of the other open-source

developers on which he relied; therefore, he decided to release Linux under the GNU General

Public License (GPL) [31]. As Linux's popularity grew, more and more people sent in patches to

add features and to fix bugs; therefore, despite its initial ridicule, this basic development method

has grown into a worldwide success. Torvalds' original fears of IP theft never materialized; by

virtue of its large and active development community, anyone who attempts to fork Linux in

secret is rapidly left behind as the kernel continues to evolve. In many respects, the open-source

concept and development process parallels the best traditions of academia; the original ideas and

culture that allowed the development of the first computers have, therefore, come back into

widespread use decades later.

Once the foundations of an open-source, POSIX-compliant operating system had been

laid down, many other open-source projects found new footing and prospered. Linux became,

and still is, the most popular platform for servers [32] [33]; within the past decade it also has

become usable in the desktop space. Since the foundation of the GNU project, numerous

important open-source projects have flourished. There is insufficient space to do them justice, so

I only will spotlight a few critical developments. MIT was responsible for the initial

development of the now ubiquitous X Window System, of which some variant is in use on

almost every graphics-enabled, POSIX-compliant desktop or server system worldwide. In turn,

two major desktop environments and their associated applications were built on top of the X

13

Window System, namely Gnome and KDE. On the server side, the Apache HTTP server was

developed for use on Linux and on other POSIX-compliant systems, and has remained the

world's most popular Web server for the past 17 years [34]. In light of this remarkable success,

open-source software is now widely considered a serious contender to commercial, closed-source

software [35].

Advantages of Linux and FOSS

Advantages of Linux and other free and open-source software include very low barriers

to entry, a wide variety of high-quality libraries and graphical toolkits with which to build new

applications, standards compliance, and true multi-user support. In general, only an inexpensive

PC with an Internet connection is required to install Linux and to gain access to a wide array of

open-source development tools. Linux also supports many different desktop environments; a

Linux machine can, therefore, be customized to optimize specific tasks, whereas commercial

operating systems generally provide a single, one-size-fits-all desktop environment. Unlike

many commercial operating systems, Linux is fundamentally a multi-user system, supporting

multiple independent users on a single machine and providing a security framework designed to

keep user accounts separate and secure. In general, unless a user has been granted administrative

privileges or an exploit has been found, it is impossible for a single user to bring down or

fundamentally corrupt a Linux system; this is an attractive characteristic when considering a

system for deployment in a collegiate environment.

14

Overview of Field Programmable Gate Arrays

The initial version of this remote laboratory primarily targets remote development with

Field Programmable Gate Arrays (FPGAs); therefore, a brief look at the history of the FPGA

follows. The FPGA was originally invented by Ross Freeman [36], a founding member of

Xilinx [37], to allow customers to define custom, on-chip logic without requiring design and

manufacture of an expensive Application Specific Integrated Circuit (ASIC). At the time,

transistors were an expensive, on-chip resource, and major semiconductor corporations, such as

Zilog, were unwilling to commit resources to a project that could end up as a commercial failure.

Freeman left Zilog, along with Xilinx co-founder Bernard Vonderschmitt, to pursue his idea

through their start-up, Xilinx, funded primarily by venture capital [38]. Xilinx shipped their first

FPGA, the XC2064, in 1985, leveraging common workstation platforms to support the basic

design tools needed for programming this new type of device [39] [40] [41].

The fact that the entire development toolchain for all major FPGA manufacturers has

been completely closed-source from the beginning has led to a number of problems and

inefficiencies in a typical FPGA development cycle; these start with random failures inside the

synthesis tools and end with the requirement that an expensive, proprietary programmer be

utilized to interface with the FPGA device over the Joint Test Action Group (JTAG) interface.

Furthermore, the closed-source tools are typically compiled for Intel 386-compatible platforms

only, severely restricting the use of new, power-efficient development platforms and also

preventing the emergence of self-modifying hardware designs; although such designs have been

15

studied in theory, none have been reduced to practice due to this limitation of the toolchain.

Modern FPGAs can be viewed as a blank integrated circuit containing many different

specialized components; these components can be dynamically wired together utilizing a

configurable interconnect fabric. For example, a typical Xilinx device includes, at minimum,

clock generation modules, dedicated clock routing buses, small RAM blocks, and I/O buffers.

Newer devices include more complex modules, such as SERializer/DESerializer (SERDES)

blocks, to enable high-speed interchip communication. Fundamentally, though, the basic

operation of an FPGA has not changed much since its invention. The FPGA still contains large

quantities of configurable discrete logic within its fabric, grouped together into slices that are

then used by the manufacturer-provided toolchain to implement designs described in a standard

Hardware Definition Language (HDL). The FPGA remains a popular alternative to custom

ASIC designs because, in most cases, the slight benefits in unit cost and performance of a custom

ASIC do not justify the high cost and initial risk associated with such a design. These devices

also are ideal for an educational setting, allowing a student to create a custom integrated circuit

design and actually test that design, instantly, on real hardware with negligible cost to either the

student or the educational institution. FPGAs, therefore, enable hands-on learning in an area that

was previously inaccessible to students, and also largely supplant the prior methods of wiring

new designs by hand from discrete logic gates.

Past and Present Remote Laboratories

Several attempts have been made over the years to create a remote laboratory

16

environment that can supplant the existing physical laboratories present in most universities.

Many remote laboratories focus on simulation only, or on point-and-click guidance through a

specified, simple experiment. Additionally, many of these laboratories do not offer terminal

services, and those that do are heavily reliant on Microsoft Windows and other closed-source

software for their operation. Due, in part, to the various shortcomings in each remote laboratory

system, none has seen widespread adoption in education. It is the author's belief that in order for

any new technology to be widely adopted, and especially if it is to supplant an existing

technology, the new technology must provide all the features originally present in the existing

technology, as well as contribute at least one new and useful feature that justifies the migration.

Another method to force widespread adoption historically has been deprecation and removal of

the older technology; this is problematic because it also has made users of such products

justifiably reluctant to invest in current systems produced by the same source, especially if the

current system is considered largely inferior to the older system.

Table 1 provides an overview and comparison of the various types of remote laboratories

in existence today, including the new remote laboratory system detailed in this document

(hereinafter referred to as the Universal Remote Laboratory or uLab). As can be seen, the new

remote laboratory is the only full-featured system to make extensive use of open-source

software; this allows the laboratory to be customized to the particular needs of a given institution

and also ensures that there is some degree of permanence built into the overall system.

Additionally, the new laboratory is the only laboratory that provides an unscripted,

reconfigurable workspace to the user; instead of simply altering one or two input variables and

observing a response, the user is given complete control over a desktop-based development

17

session, a reconfigurable hardware device, and any test equipment attached to that device,

thereby closely approximating a typical physical laboratory environment. This unscripted

environment inherently includes the ability to use the equipment in unusual and novel ways, or

even to fail to produce a working experiment; these real-world traits are not present in most

guided online laboratories.

Table 1: Comparison of Remote Laboratory Features

uLab RemoteFPGA
[42]

SolarLab
[43]

MIT iLab
[44] [45]

TCAD
[46]

VISIR
[47]

TINI-based
[48]

User access control X X X X X X

Pluggable backend server
access control

X X X

Encrypted, authenticated
client-server
communication

X

Encrypted, authenticated
inter-server
communication

X

Single sign-on (SSO) X

Terminal services X X X

Integration with existing
course management
systems

Access from new forms of
computing devices

X X X X X X

Web-based interaction X X X X X

Rich GUI widget I/O
(not camera based)

X X X X X X

Modular design X X

Legend:
X Supported
/ Technically possible with minor changes but not yet implemented
An empty box indicates that the feature is unsupported without major changes to software, hardware, or both.
Please note that only those features mentioned in the referenced sources are included in this table.

(continued on following page)

18

Table 1: Comparison of Remote Laboratory Features

(continued from previous page)

uLab RemoteFPGA
[42]

SolarLab
[43]

MIT iLab
[44] [45]

TCAD
[46]

VISIR
[47]

TINI-based
[48]

Reconfigurable hardware
connections

X X

Integral surveys and/or
learning assessment

/ X X

HCI method WIMP WIMP WIMP WIMP WIMP WIMP WIMP

Primary client/server
programming language(s)

C
C++

Visual Basic LabView
PHP

Java
LabView

LabView LabView Java
MATLAB

Remote development tools X X X

Remote simulation tools X X X X X

Access to physical
hardware

X X X X X X X

Exclusive, full access to
physical hardware

X X X X X X X

Inexpensive, low-power
network to hardware
interface

X X

Unscripted
experimentation
environment

X X X X

Laboratory software
available as open-source

X X X X X X

Storage for user design
files

X X

Integral capture and
storage of experimental
results

X

Legend:
X Supported
/ Technically possible with minor changes but not yet implemented
An empty box indicates that the feature is unsupported without major changes to software, hardware, or both.
Please note that only those features mentioned in the referenced sources are included in this table.

uLab DESIGN AND IMPLEMENTATION

Design Goals and Laboratory Components

The new remote laboratory system was designed, from the ground up, with scalability,

reliability, and security in mind. Single points of failure were determined, and, where possible,

eliminated through the use of redundant systems. Where this elimination was not feasible,

largely due to a lack of underlying network protocol support and global concurrency issues,

highly reliable systems were utilized. By transparently distributing session resources across

multiple systems, both reliability and scalability were enhanced; this is because the central

servers were no longer directly involved with execution of design tools or access to physical

hardware. If a non-central server were to fail or crash, a hot spare can be placed into service

immediately, thus minimizing disruption to users of the system. Multiple non-central servers,

hereinafter referred to as nodes, also could be installed into one remote laboratory system; this

would provide nearly linear scalability of the maximum number of concurrent sessions as long as

bandwidth limits were not approached.

The new laboratory system is comprised of three main parts: fundamental infrastructure,

terminal services, and laboratory workspaces. Without proper infrastructure, the laboratory

would degenerate into a loose collection of relatively isolated software with a corresponding

increase in difficulty of use and management. Therefore, this discussion will describe

infrastructure design goals and their practical implementation, and then progress, in a similar

20

manner, to the dependent services that comprise the remotely accessible portion of the

laboratory. For reference, a simplified, generic laboratory design that uses all three components

is shown in Figure 1.

Infrastructure

Because this system will be exposed to the Internet and also may be exposed to unsecured

public networks for inter-server communication, user management and encryption play a large

role in the design of the laboratory. Design goals include single sign-on (SSO) capability;

centralized, point-and-click user management; varying levels of access to laboratory workspaces

and software; authentication of users and servers; encryption of all communications; and the

ability to safely place equipment interface servers wherever physically convenient. While

several open-source solutions exist that can handle centralized user management, authentication,

or authorization, including NIS [49], Samba AD [50], Kerberos [51] [52], and OpenLDAP [53],

none of the existing solutions met all of the design criteria on their own. Therefore, a custom

solution was formed through the assembly of NTP [54], Heimdal Kerberos, OpenLDAP,

GSSAPI [55], and SASL [56], as well as the creation of new GUI and Command Line Interface

(CLI) tools for realm and user management.

Centralized User Management and Authentication

Kerberos, a key component of the custom solution, is primarily a secure authentication

21

F
ig

ur
e

1:
 M

aj
or

 c
om

po
ne

nt
s

of
 a

 g
en

er
ic

 u
L

ab
 s

ys
te

m

22

protocol, working through the use of “tickets” to cryptographically grant access to remote

services. Each ticket is granted to a user from a central server, on request, via a passwordless

exchange; at minimum, this ticket guarantees that the ticket holder is who he or she claims to be

on the network. Generally, this initial ticket is given in the form of a “ticket-granting ticket,”

which allows the user to request access to specific services without reentry of the logon

password. Once the user has received a service access ticket, all further communication and

authentication for that service is performed solely between the service provider and the client.

Tickets are mandated to expire after a certain duration to prevent a wide range of attacks; this

expiration interval is configurable on the central Kerberos server(s). Expired tickets may be

renewed through communication with the central Kerberos server(s), up to a maximum number

of times specified by the configuration on the central Kerberos server(s). After all renewals have

been used, the user must re-authenticate to Kerberos and receive a new ticket-granting ticket to

continue using services.

Holders of Kerberos tickets are able to establish encrypted communication with remote

machines after initial authentication. This allows the entire exchange, from authentication to

connection termination, to take place within a secure channel, effectively guaranteeing that

eavesdropping attempts or data injection attacks are not possible if an attacker only has access to

the communications network. Additionally, since authentication is an integral part of

establishing the encrypted connection, all servers and clients “know” who they are

communicating with at all times. Kerberos groups all machines with access to a specific

Kerberos server or set of servers into Kerberos realms, with the name of each realm consisting of

an uppercase version of the machines' Domain Name System (DNS) suffix. For example, if a

23

Kerberos server's full DNS name was server1.my.domain.edu, the Kerberos realm would be

MY.DOMAIN.EDU.

Stand-alone Kerberos has a number of drawbacks that mandate its use with other

technologies like the Network Time Protocol (NTP) and Lightweight Directory Access Protocol

(LDAP). The cryptographic exchange that occurs during authentication is extremely sensitive to

clock skew, and will fail if the clocks on the two machines involved are offset from each other by

more than a few minutes. This mandates the use of a technology such as the Network Time

Protocol; when such an NTP server is set up on the primary Kerberos server, all configured

clients automatically can keep their clocks in nearly perfect (<1ms jitter over most links)

synchronization with the Kerberos system. In turn, the NTP server is configured to keep its

clock in synchronization with a global clock reference, such as the NTP pool, or a lower-stratum

(higher precision), atomic-clock-derived reference, such as a local GPS receiver.

Another significant drawback of most stand-alone Kerberos installations is the difficulty

of managing users. Kerberos was designed to store information only directly related to

authentication; therefore, it does not provide any authorization or user-management related

information, such as POSIX group membership, POSIX user ID, home directory, or even the

user's full name. Without this additional information, Kerebros authentication is nearly useless

because the systems and servers using such authentication will not generally know what

permissions to grant each authenticated user. Therefore, a separate LDAP server is required to

store this additional information and make it available to Kerberos-enabled systems on request.

A typical LDAP server, such as OpenLDAP, is essentially a network-enabled wrapper

around a very small, lightweight database. Its sole purpose is to store and transmit data, on

24

request, over the network. On its own, an LDAP server provides basic access methods, such as

password-based login over a (possibly encrypted) network link, but the LDAP server cannot

natively provide the robust user authentication, ticketing, or encrypted links characteristic of the

Kerberos system. Furthermore, a stand-alone LDAP server maintains its own user database,

which will tend to drift out of of sync with more advanced user management methods, such as

Kerberos or NIS. Clearly, some combination of the two services is ideal, and many corporations

and individuals have combined the two with varying degrees of success.

Kerberos can be configured to store its authentication information on an LDAP server;

however, this still does not solve the problem of LDAP maintaining a separate user database.

Therefore, a third piece of software is required, namely the Simple Authentication and Security

Layer (SASL). OpenLDAP can be configured to use SASL to authenticate users; SASL, in turn,

uses Kerberos to authenticate users passed to it by OpenLDAP, as illustrated in Figure 2. As

might be obvious at this point, there is a circular dependency loop present for non-local access

when this system is operating normally. The presence of this loop, when combined with

OpenLDAP and Kerberos' arcane and poorly documented configuration files, makes the creation

of a working server utilizing all three technologies very difficult. Thus, for the uLab system,

new open-source tools were created to automatically handle this tedious and error-prone task.

The new tools also allow easy, point-and-click access to post-setup maintenance functions, such

as LDAP root certificate updates and administrative password changes; two of the new tools are

shown in Figure 3.

On the local machine hosting Kerberos and LDAP, the dependency loop is purposefully

broken at one point; Kerberos communicates to OpenLDAP through a local domain socket

25

Figure 2: Realm controller service interdependency

26

Figure 3: Two of the realm management utilities utilized within the uLab system

27

(ldapi://), bypassing OpenLDAP's authentication protocols entirely. Therefore, it is important to

both keep the realm controllers in a secure physical location and to have no other services of any

type running on the realm controllers. The realm controllers are the largest single point of failure

and security concern of the entire system; if even one realm controller is breached, an attacker

could gain full access to every machine in the realm. Similarly, if only one realm controller is

present, its failure will cause all machines in the realm to reject all non-cached/non-local login

and service access requests, effectively halting normal operation of the entire realm. LDAP and

Kerberos both contain mechanisms to create backup secondary realm controllers that allow the

realm to continue normal operations if the primary realm controller fails; however, alterations of

the user directory generally are not possible unless a primary realm controller is present and

active.

DNS and DHCP

A critically important and often overlooked Kerberos requirement is proper forward and

reverse name resolution of all servers and client machines within the realm. This is

accomplished in the new remote laboratory through the use of the Berkley Internet Name

Daemon (BIND) DNS server [57], containing correct entries in both the forward and reverse

DNS files for every server within the cluster. In a larger network with hundreds of workstations

and possibly even Bring Your Own Device (BYOD) support, BIND can interface with the ISC

Dynamic Host Configuration Protocol (DHCP) server [58] to automatically create and remove

the appropriate DNS entries on DHCP lease allocation/expiry. For the service to work, the DNS

name of the Kerberos realm must be resolvable from all member machines within the realm. If

28

the Kerberos realm's DNS name is not resolvable, Kerberos will fail to work because it will be

unable to locate the appropriate servers from which to request tickets. Similarly, if a client is not

properly entered into the DNS system, the server will refuse to generate tickets for that unknown

client.

Persistent Data Storage and Diskless Nodes

Because the remote laboratory provides users with access to a desktop and various design

and simulation tools, some form of user data storage is needed. To simplify uLab maintenance

and to limit potential points of failure, a single, large, redundant disk array is provided for this

purpose. This disk array also contains, on a separate partition, the operating systems and data

files of all nodes within the cluster; each node is booted via the Preboot Execution Environment

(PXE) [59] and the Network File System (NFS) [60], and contains no local permanent storage

devices. This architecture allows a failed node to be swapped out simply by replacing the entire

server and changing its persistent DHCP lease to reflect the new server's MAC address. No data

copying or setup is involved; this allows a server to be swapped out (or a spare machine brought

online) within a matter of minutes, limiting downtime and any related disruption of services.

The central disk array is shared within the cluster over NFS v3; this is a basic file sharing

protocol that does not allow encryption or authentication. It is assumed that the internal network

within the remote laboratory cluster will be physically protected against malicious devices; if for

any reason this is not possible, then diskless clients should not be used. If it becomes desirable

to share the disk array outside of the remote laboratory cluster, NFS v4 should be used because

29

NFS v4 supports Kerberos-based authentication and encryption. Currently, the uLab system uses

NFS v3 and permits no direct external access to the disk array.

Each diskless node is not capable of immediately starting the Linux kernel from its

internal BIOS. While projects such as CoreBoot [61] exist that would make this feasible in some

situations, the extreme difficulty of replacing the provided BIOS with a custom bootloader

makes this impractical for all but the largest server farms. Instead, the Linux kernel must be

loaded from an intermediate bootloader, which is, in turn, loaded from the network card's

network boot system, and, thus, from the provided BIOS itself. The intermediate bootloader

used by uLab is PXE; this loader requires both a DHCP and a Trivial File Transfer Protocol

(TFTP) server [62] to function. On boot, the network card's firmware uses DHCP to acquire an

IP address, and also to locate the TFTP server on which the network bootstrap program is

located. On acquisition, the firmware downloads the network bootstrap program (in this case,

the PXE bootloader) into RAM and executes it. PXE, in turn, queries the TFTP server for valid

configuration files; these files are searched, in order, from most specific (MAC address) to least

specific (IP address, then a default file). Each configuration file contains, at minimum, the

filename of the Linux kernel and associated Initial Ram Disk (initrd) image to download and

boot. Normally, the kernel command line also is specified, which allows the root device to be set

to the NFS server and path containing the system files for the particular node. Upon successful

download, PXE boots the kernel; the kernel, in turn, locates the system files on the specified

NFS server and mounts that directory as the system root, thus completing the initial stages of the

boot process. From this point, boot proceeds normally, as it would on any other Linux system,

with sequential service startup leading to boot completion.

30

As with any centralized solution, there is a bottleneck inherent in the communication

links connecting the servers to the disk array. To ensure that sufficient bandwidth is available at

all times, a dedicated 10Gbps Infiniband [63] system was installed solely to transfer data

between the terminal service nodes and the server containing the disk array. Core system files,

Kerberos packets, and RDP data are transferred over a standard 1Gbps Ethernet (IEEE 802.3)

system [64] that links all of the disparate nodes together. Security is ensured by denying users

direct access to the networking hardware, forcing all requests for data to go through the kernel's

built-in security protocols. As mentioned earlier, if this is not possible, then diskless clients

should not be used; the infrastructure required to support them would present a security risk

when used outside of a dedicated, physically secured environment.

Configuration and Session Management Database

Many of uLab's remote laboratory services use MySQL [65] to determine the privilege

level of authenticated users, for statistical tracking, and for service configuration; therefore, the

central server also provides a MySQL database server instance to the internal network. This

instance is strictly off-limits to users of the system, but is accessible from the services running on

the various remote laboratory nodes. In general, the databases are intended to be directly

modified only by a qualified administrator during installation of a new service and by the various

laboratory services themselves. Similarly, the statistics gathered are designed to be used by an

appropriate data mining tool, not obtained directly in human-readable format. To maintain

modularity and security, each of the two remote laboratory components stores its information in

31

a separate, self-contained database within the MySQL server, and accesses the appropriate

database through its dedicated machine user account.

Public Network Interface

A final interface is needed between the remote laboratory cluster and a public network or

Internet. This interface should consist of a router with a firewall configured to forward only a

few select, needed ports onto the public network, thus keeping the internal network separate and

secure. Ideally, this firewall would be a stand-alone system that does not run the same base

operating system as any of the machines in the remote laboratory cluster; this prevents a single

exploit from being used to take down the entire system, as would be possible in a homogeneous

environment. Furthermore, this router should be able to track bandwidth used, hacking attempts,

and, as the last single point of failure, should be constructed from a high-reliability system.

pfSense [66], a router built on the Berkley Software Distribution (BSD) and with all of its

functionality accessible through a web-based point-and-click GUI, meets these needs in the uLab

system. pfSense also provides several optional features, such as a built-in Intrusion Detection

System (IDS) and the ability to block abusive clients.

Final Design

The final infrastructure design for the uLab system uses three separate, high-availability

servers; a Gigabit Ethernet (GbE) switch; and an Infiniband.10Gbps switch. One server is

32

dedicated to pfSense (router001.cluster90.edu); this machine accepts a high-speed public Internet

connection and routes it to a dedicated network port on the master server

(master001.cluster90.edu). The master server runs Debian Wheezy; it also contains a large

Extended File System v4 (ext4) disk array, two GbE network ports, and a 10Gbps Infiniband

interface card. This machine hosts DNS, DHCP, TFTP, NFS, MySQL, and Apache HTTP

services for the entire cluster, and is a member of the internal CLUSTER90.EDU Kerberos

realm. In this particular instance, the master server also hosts a copy of the Debian package

archives over HTTP for access by machines within the remote laboratory cluster; this makes

software management both faster and more reliable. The final server (ldap001.cluster90.edu) is a

dedicated Kerberos realm controller, hosting LDAP, Kerberos, and SASL services for use by the

entire CLUSTER90.EDU Kerberos realm.

Scalability and Reliability

LDAP, Kerberos, and MySQL are known to reliably scale to thousands of clients with

ease, require little bandwidth, and support inter-machine replication; therefore, I will treat access

to those services as essentially unlimited. However, both the centralized disk array and router

present challenges to scalability. Some of the scalability and reliability concerns of the disk

array can be mitigated through the use of a clustering file system, such as Oracle Cluster File

System v2 (OCFS2) [67] or the Z File System (ZFS) [68]; however, this can lead to a

performance loss, depending primarily on the speed of the interconnect between the replicated

file servers. If diskless clients are in use, they should be allocated in racks with a dedicated disk

33

array for their system files placed within each rack, with only the global user data store utilizing

the clustered file system. In a similar fashion, limitations of a single central router can be

worked around through the use of several routers, with clients being randomly routed to a

specific router on initial connection through a round-robin DNS scheme. Therefore, limits on

scalability should not be apparent within the fundamental architecture until the aggregate

network bandwidth between servers is nearly saturated.

Terminal Services

Unlike most competing remote laboratory solutions, the uLab system does not use a Web-

based interface to any of its services, opting instead to provide a traditional, feature-rich, WIMP-

based GUI in order to provide an experience that is as close to real-world work as possible. As

such, it is important to provide access to a full desktop environment in which the design tools

and remote laboratory GUI can be utilized effectively and efficiently. For this reason, terminal

services are provided to the students over Microsoft's industry-standard Remote Desktop

Protocol (RDP) [69]. Normal terminal services over RDP, such as those provided by Microsoft

or the open-source FreeRDP project [70], are not easily scalable due to the fact that each client

must connect to a given server. Providing additional terminal servers, while alleviating

overcrowding on existing servers, brings additional challenges in the form of session

consistency, server management, and active session resumption after disconnection.

Design goals for the terminal services component of uLab include ease of use, single

sign-on, persistent sessions, persistent user data, efficient use of bandwidth, access to shared data

34

files (such as course information and digital drop boxes), and usage of a standard protocol that

most network-enabled computing devices can utilize. Additionally, the terminal services should

provide a wide range of appropriate hardware design and simulation tools to allow users to select

the best tool for a task, instead of being forced to use a limited or incorrect tool simply because it

was the only workable tool available on the remote system. The hardware used for the terminal

services nodes should be powerful, with multiple CPUs and a large amount of RAM installed to

support multiple users running complex simulation or synthesis tasks simultaneously.

The RDP protocol fundamentally provides the ability for input devices, such as a mouse

and keyboard, to transmit input actions over a network to a terminal server for processing.

Similarly, it also provides the ability for the terminal server to send back the current remote

screen as a series of compressed images, transmitted only when an item or items change on the

remote screen. At one time, various portions of the basic RDP protocol were covered under

various patents; however, most (if not all) of the relevant patents have expired in the United

States. If there is any concern of patent violation in the intended application (i.e., commercial

use instead of computing research in areas where any RDP-related patents still are valid), then

alternative, but less widely supported, equivalent protocols, such as the X Display Manager

Control Protocol (XDMCP) [71] or Virtual Network Computing (VNC) [72], with a separate

PulseAudio [73] service, should be used instead of RDP. Encryption is supported by RDP, but is

relatively weak by modern standards; there also is no way to increase the nominal encryption

level of the terminal services when used with most existing remote desktop clients. When using

RDP or a similar protocol, all computations, input processing, and display actions are performed

on the remote server, reducing the client to the role of a dumb terminal. This characteristic

35

allows almost any computing device to connect to the system and provide a basic level of

functionality; only a network-enabled computing device and its associated keyboard, mouse, and

display are required to interact with the remote terminal server.

To provide redundancy and scalability to uLab's terminal services, the xrdp server from

the FreeRDP project was modified to support the concept of a central forwarding server. This

forwarding server is responsible solely for initial authentication and selection of an appropriate

RDP backend server; each backend server is then responsible for hosting individual terminal

sessions. This architecture alleviates the scalability and reliability concerns typically associated

with a single terminal server by allowing multiple RDP backend servers to be utilized

transparently, even though the system only presents a single terminal services address to its

users. Cross-session consistency is ensured through the use of the central disk array, which

stores all user data including each users' desktop configuration files. Additionally, each login is

recorded in a dedicated database with all of the pertinent information required to reestablish a

connection to the backend server, if needed. This information includes the username, backend

server, X11 display number, and Process Identifier (PID) of the window manager in control of

that session. Upon termination of the window manager, the associated session information is

removed from the database, and all daemons and processes related to that session are terminated.

Communication between the RDP forwarding server and the RDP backend servers is

accomplished over three separate channels. Control of the RDP backend servers is handled via

passwordless secure shell (SSH) commands; the commands originate on the forwarding server in

response to login and termination requests, and are sent to the appropriate backend server during

session startup and teardown. RDP video and input device actions are handled via an xrdp

36

session stream, with the forwarding server acting as a simple router, ensuring that each stream is

routed from the appropriate RDP backend server to its attached remote client. Audio is handled

in a third PulseAudio stream. Each terminal session executes an independent PulseAudio server;

this server then captures all sounds generated within the active session, and transmits the

resultant audio stream to the RDP forwarding daemon for subsequent transmission to the client.

While portions of this architecture were present as legacy code within the xrdp project, the

original intent of that code appears to be separation of a single forwarder and single backend

server. A significant amount of work on the xrdp codebase was required to make the

aforementioned design work reliably and to incorporate much-needed features, such as remotely

commanded termination of active sessions and tracking of active-connected versus active-

disconnected sessions. The final design of this component is shown in Figure 4.

Desktop Environment

Linux provides a wide variety of desktop environments to choose from; therefore,

selection of an appropriate environment that will both enable complex engineering tasks and

function well over RDP is critical. The two most widely available desktops, as of this writing,

are KDE [74] v4.x and Gnome [75] v3.x; however, neither of these is suitable for use over RDP

for a number of reasons. Both rely heavily on OpenGL and raw CPU power for “eye candy”

(graphical effects that primarily serve to entertain the user); because the terminal servers do not

contain graphics cards to enable accelerated OpenGL, severe performance penalties would be

incurred by its continual use. Although KDE contains an OpenGL-free compatibility mode, it is

37

F
ig

ur
e

4:
 A

rc
hi

te
ct

ur
e

of
 th

e
te

rm
in

al
 s

er
vi

ce
s

co
m

po
ne

nt

38

built on top of the Qt v4.x toolkit, which does not perform well over remote desktop links.

Furthermore, both desktops are built around a concept generally referred to as the “semantic

desktop”; this concept primarily is designed for personal information management and retrieval.

The search and indexing tools on which the semantic desktop is built also require a fair amount

of CPU power and memory to function properly, and the desktop environment will not function

correctly without them. Supporting the maximum number of users on a given terminal services

node requires that all sources of replicated bloat, that is, any unneeded CPU and memory usage

caused by a single user session, must be carefully controlled. In the author's opinion, neither

KDE nor Gnome is a suitable candidate for use with the new remote laboratory system, since

both inherently use non-trivial amounts of CPU and memory per session for functions that do not

enhance the overall laboratory experience.

Fortunately, there are several less popular, non-semantic, WIMP desktops from which to

choose, including LXDE [76], XFCE [77], Cinnamon [78], and TDE [79]. All are reasonable

choices for inclusion in a remote laboratory; however, TDE was chosen due to both its unique

feature set and the author's familiarity with the TDE desktop environment. In the author's

opinion, LXDE and XFCE are too light on features to be chosen if another reasonable alternative

is present; also, they, together with Cinnamon, suffer from a somewhat complex, confusing

programming style and set of Application Programming Interfaces (APIs). Because all three

desktops are based on the Gimp Toolkit (GTK) [80], programs written in the competing Qt [81]

toolkit do not integrate well with any of these desktop environments, and vice versa. Therefore,

providing a consistent user experience practically mandates the use of the native programming

toolkit of the desktop environment in use; where workarounds do exist for other desktops, they

39

generally consist of complex and largely unsupported pieces of software. By contrast, TDE is

built on the older Qt v3.x toolkit, which, despite its age, not only works efficiently over RDP and

XDMCP links but also presents a reasonably powerful programming style and set of APIs to the

developer, thus making it the best choice for the uLab system.

Software Packages

The desktop environment in use is only one consideration in providing a full-featured

laboratory workspace for the student. Careful attention must be given to the applications that are

made available to the user; for a computer engineering laboratory to be successful, a wide variety

of design tools must be installed. Broad categories include: software development tools,

hardware development tools, hardware simulation tools, office and graphics tools, and remote-

hardware access tools. In the uLab system, the first category is populated with FOSS programs,

such as Kdevelop [82], Eclipse [83], gcc [84], and similar utilities, with no need to resort to

proprietary or closed-source tools of any type. Hardware development tools are a different

matter, as discussed earlier; in particular, FPGA design tools, such as Xilinx's ISE, are only

available as closed-source bundles from the FPGA's manufacturer. However, a few notable

exceptions to this general rule exist, such as gEDA [85] and LibreCAD [86]. The new remote

laboratory also includes closed-source freeware, such as LASI, an integrated circuit design

package. Hardware simulation tools include KPicoSim, a FOSS Picoblaze simulator, and

LTSpice, an excellent closed-source SPICE-based circuit simulator. Office and graphical tools

are provided through the comprehensive FOSS LibreOffice suite, with advanced graphics

40

handled through the inclusion of GIMP [87], another excellent FOSS program. Finally, a means

of accessing the hardware of the remote laboratory must be provided; in the uLab system, this is

handled via the inclusion of the uLab remote client, as detailed in a later section.

User Data Storage

All of the tools listed above require read-write access to a significant amount of

permanent storage, as does the desktop environment itself. Following UNIX tradition, each user

is given a home directory, which resides on the central disk array. Each user has full read-write

access to this directory, and is expected to properly organize his or her files within this space. It

may be advantageous to provide each user with read-only or write-once access to certain other

paths, with the former being useful for provision of a central course documents area, and the

latter being useful as a digital drop box that relies on the file creation date to timestamp

submission of the dropped file. Furthermore, a collaborative area also could be provided via the

use of POSIX groups; by adding each user to course-specific groups, then providing a set of

directories with group read-write permissions for each, students who are members of particular

classes could view and modify each other's files in course-related directories. This feature would

be useful in a course, such as Introduction to Engineering, which includes development of

collaborative ability in its desired outcomes.

41

Final Design

The final design of the uLab system adds one diskless terminal server node

(node001.cluster90.edu) to the cluster, and installs the RDP forwarder on the central server

(master001.cluster90.edu). In addition, the following software packages are installed because of

this particular laboratory's focus on computer engineering and FPGA-based hardware design:

• TDE

• QtOctave

• WXMaxima

• KPicoSim

• LTSpice

• gEDA

• LASI

• Xilinx ISE

• Xilinx EDK

• LibreOffice

• GIMP

• uLab Client

42

Scalability and Reliability

Scalability in this portion of the system primarily is limited by the RDP forwarder itself.

The scalability may be increased by utilizing multiple RDP forwarder servers, with a specific

forwarder being selected on initial user connection through round-robin DNS or a similar load-

balancing scheme. All other aspects of the terminal services component should scale linearly

with the number of available terminal service nodes. From a reliability standpoint, the RDP

forwarder servers present single points of failure with the potential to disconnect large numbers

of students if one or more of the servers were to fail. Although the students' sessions would

continue to run on the RDP backend nodes, students would need to reconnect through a different

RDP forwarder in order to reestablish a connection to their sessions. This process should be

handled transparently by the load balancing scheme in use; however, there would be an

undesirable, although transient, interruption of the users' sessions upon RDP forwarder failure.

Failure of a single terminal service node is less catastrophic on a global level, although more

serious on a local level. If a terminal service node were to fail, all connected users would have

their sessions immediately terminated, potentially losing data in the process. In many respects,

this would have the same user-visible effects as if someone had pulled the power cord on a stand-

alone desktop system. However, unlike an XRDP forwarder failure, a terminal service node

failure only would affect a small number of users. Therefore, it is recommended that the XRDP

forwarder utilize high-availability hardware, whereas the XRDP backend servers may utilize less

reliable–although much more powerful–hardware that is suitable for the computationally

demanding loads encountered.

43

uLab Remote Hardware Access System

The third and final portion of the new remote laboratory system is the software that

enables direct access to laboratory hardware. Because the students will be using this portion of

the remote laboratory as a substitute for direct, hands-on access to laboratory hardware, careful

thought was given to the design of this component. Additionally, because a wide range of

laboratory hardware is available, hardware-specific servers and client components were utilized

where possible. The overarching concerns of scalability, reliability, and security are no less

relevant here than elsewhere within the system; as such, the fundamental architecture of the

hardware-access system is designed to reflect these goals.

Design goals for the uLab remote hardware-access system include modularity, intuitive

GUI controls, user access control, encrypted links, scalability, reliability, and low cost. The

system allows third parties to easily develop new hardware interface servers and related GUI

clients, thereby allowing new hardware devices to be provided with appropriate GUI interfaces

within the hardware-access software. Another major goal of the new hardware-access system is

to break the observed reliance on closed-source software, such as LabView, and, therefore, to

provide a complete open-source solution from the uLab client GUI all the way down to the

physical hardware devices within the laboratory. A final goal is to utilize inexpensive, open-

source, hardware-interface computers instead of the previously utilized proprietary hardware-

interface cards and machines. The hardware-interface computers usually are one of the most

expensive components of the laboratory, along with the laboratory hardware itself, simply

because of the number of interface computers required to support any significant number of

44

simultaneous users of the remote laboratory. Usage of inexpensive, open-source hardware for

the hardware-interface computers is, therefore, highly desirable, especially in education where

peak simultaneous users likely will be relatively high when compared with the average number

of simultaneous users.

Authentication, Authorization, and Encryption

To accomplish the stated design goals, the hardware access system utilizes Kerberos

extensively. A central arbiter daemon provides a uLab Kerberos service, and each client

(including hardware-interface servers) must present a valid Kerberos ticket on initial connection.

Upon successful Kerberos authentication, the communications channel immediately is switched

to encrypted mode for security purposes. The lowest levels of this functionality are broken out

into a new library (tdekrb) that provides an easy-to-use, frame-based data transfer method to

higher-level applications while transparently handling Kerberos-based authentication and

channel encryption. The use of Kerberos tickets in this application ensures that the hardware-

access client can utilize the credentials provided on initial login, thus avoiding the need for the

user to re-enter login credentials when starting the hardware-access client. If the user does not

log on via the provided terminal services, then he or she will need to request a valid Kerberos

ticket before being allowed to use the remote-hardware services.

The central arbiter utilizes a MySQL database to store its configuration information. As

such, it also reads a small configuration file on initial startup to obtain database login credentials

and its Kerberos service name; the former is required because MySQL lacks Kerberos integration

45

at the time of this writing. The preferred solution is for the arbiter to authenticate to MySQL

through GSSAPI, and this should be implemented once support is available in either MySQL or

the newer MariaDB packages. The configuration database contains information on each

available workspace, including type, hosts and services, the client part associated with each

service, workspace access control, and active workspace reservations. The central arbiter checks

each authenticated, incoming service-access request against the permissions database to ensure

that only authenticated users are allowed to access the hardware-access daemons for which they

have permission. Upon detection of a request to access a disallowed resource, an authorization

failure message is sent and the connection is terminated immediately; this happens without

establishment of a connection to the requested hardware access daemon. This process effectively

prevents an anonymous Distributed Denial of Service (DDoS) attack against the hardware-access

servers themselves.

Hardware-access servers utilize the same authentication methods and encrypted links as

the hardware-access client; therefore, the hardware-access servers can be placed safely away

from the remote laboratory cluster if desired. The central arbiter utilizes a persistent, non-

expiring Kerberos ticket to identify itself to each hardware-access server; this prevents a rogue or

malicious arbiter from utilizing hardware resources to which it has not been granted access. If a

hardware-access server becomes compromised, the damage would be limited to any directly

connected hardware and/or the hardware-access server itself, presenting, in the worst case, an

effective Denial of Service (DoS) attack against a single laboratory workspace. This design

allows inexpensive hardware-interface servers to be placed directly on site, for example where

bulky or sensitive equipment is present; in extreme cases, this could allow laboratory hardware

46

located on the other side of the world to be safely and securely utilized by users of a given

remote laboratory cluster.

Client Design

The hardware-access client is primarily a container application into which GUI client

“parts” can be inserted. The container provides an MDI container window and status bar; the

latter may be changed by the active client part to present informative status messages to the user.

Additionally, toolbars and menus are provided from which installed GUI parts may be launched

as desired. These toolbar buttons and menu items automatically change, based on the type of

remote workspace the user has selected; for example, an FPGA development workspace might

show the FPGA programmer and FPGA viewer parts, while a process-control workspace might

show sensor plotter and PLC programmer parts. Each part communicates with the central

arbiter, utilizing a rigidly defined protocol. If the client part is authorized to use the requested

hardware on initial connection, then the central arbiter contacts the appropriate hardware-access

server and routes the client connection to that server. This architecture allows multiple, identical

workspaces to be provided within a given laboratory with the system, not the user, deciding

which particular workspace will be utilized for a given connection; this type of architecture

provides redundancy and masks from the end user any potential hardware-access server failures.

The client MDI container handles initial connection to the central arbiter, and on initial

connection receives a list of available workspace types to which the user has been granted

access. It presents this list to the user; then, after the user selects a workspace type, the client

47

MDI container requests a workspace reservation, matching the selected type, from the central

arbiter. If all workstations of that type are in use, the central arbiter will respond with a busy

code, and the client will prompt the user to try again later. Otherwise, a reservation for a specific

workspace of the selected type is entered into the system, and will remain valid until the initial

connection to the arbiter has been terminated, either through a client-initiated disconnection or

through the action of a laboratory manager. The central arbiter keeps track of these reservations

and, on establishment of a connection by a client part, will ensure that the reserved workspace

receives the client part's connection request. The client MDI container is designed to take a

single command line parameter that specifies the DNS address of the central arbiter of the

cluster; this can be used to hide the implementation details from the user and present an “instant-

on” hardware-access interface when used with existing Kerberos tickets from the initial login. If

this command line parameter is missing, the client will prompt for the address of the central

arbiter to which it should connect and authenticate. All of these details are hidden from the client

parts, simplifying development of new client parts and ensuring that system security is

maintained at all times. An active session with multiple active client parts is shown in Figure 5.

Server Design

Each client part connects to a specific hardware-access daemon that runs on a hardware-

access server. In turn, each hardware-access daemon is assigned a specific port on a given host;

this architecture allows one workspace to be assembled from either one server running one or

more hardware-access daemons, or from multiple hardware-access servers, each running one or

48

F
ig

ur
e

5:
 A

 ty
pi

ca
l u

L
ab

 F
P

G
A

 d
ev

el
op

m
en

t w
or

ks
pa

ce

49

more access daemons. Each access daemon opens a Kerberized server socket and expects

connections to be made from the central arbiter; if the provided Kerberos credentials do not

match the known arbiter credentials, the connection is immediately terminated. As with the

central arbiter, each hardware-access daemon follows a strict protocol for identification and

connection setup; after this process is completed, arbitrary data may be transmitted between the

client part and the hardware access daemon until the connection is terminated.

Protocol Design

The protocol between the arbiter and either clients or hardware-access servers is rigidly

defined to ensure that clients and the arbiter are able to quickly establish and verify functionality

of new connections. Although the authoritative protocol definition is provided in a document

within the Git [88] tree of the uLab system, this section will give an overview of the protocol and

the design decisions that influenced its final form. It was realized early on that some form of

frame-based transfer would be needed, as most experiments produce somewhat packeted data,

such as related groups of instrument readings, that cannot be processed reliably or displayed until

the entire data chunk has been received. Furthermore, usage of the encryption system provided

by SASL strips away any packet-length information that normally would be present if the

underlying TCP/IP protocol were directly utilized; therefore, the decision was made to sacrifice a

single bit of every byte to control characters, such as the end of frame indicator, through the use

of Base64 encoding. In practice, given the relatively small bandwidth of the hardware-access

data streams as compared with other services, such as the terminal servers, the 12.5% bandwidth

50

loss to this encoding scheme is insignificant. Using frame-based transfer ensures that all the

requisite data arrives before the client part begins to process it, increasing reliability and

eliminating a major source of network-related deadlocks. Usage of this protocol is mandatory

because the central arbiter decrypts all incoming streams and re-encrypts them using its own

keys; this process slightly enhances security by not allowing the clients to access cryptographic

material related to the hardware-access servers, and vice versa.

In an effort to make development of new client parts and hardware-access daemons as

easy as possible, the TQt-specific TQDataStream class was utilized extensively throughout the

hardware-access system. This class enables transmission and reception of TQt objects, such as

TQString and TQByteArray, with a single line of C++ code, enhancing code readability and

simplifying development. If access is needed from a different toolkit, the data structures sent and

received by the TQDataStream class are well documented, and the appropriate interface code

could be written as needed. The binary stream input and output of each TQDataStream class is

connected with the tdekrb library, which handles encryption, framing, and raw network

input/output, as detailed above and illustrated in Figure 6. Usage of this class allows network

operations to be treated as a simple passing of objects between the server and client, thereby

hiding much of the underlying complexity of the hardware-access network protocol from the

application developer. While usage of a TQDataStream-based protocol is strongly encouraged,

its usage is not mandated past initial connection establishment between a client part and its

associated hardware-access daemon. If desired, any binary protocol may be substituted once an

initial connection has been fully established; it also may be utilized without interference from the

arbiter until that particular connection is terminated for any reason.

51

Figure 6: Hardware access protocol encapsulation for transmission over unsecured networks

52

The hardware-access system currently includes several client parts and hardware-access

daemons that will find use in most electrical engineering laboratories. A GPIB-based

oscilloscope and spectrum analyzer part is provided, along with an I2C sensor plotter part. All

three parts allow export of captured data to external files for later analysis, and import of external

data files for viewing. FPGA access is included via two parts, one for programming the FPGA

and one for interacting with the design after it has been loaded into the laboratory hardware. On

the management end, two parts have been provided: one to manage authenticated user access

permissions, and one to view and control both active terminal service and active workspace

users. The latter part, in particular, allows a laboratory manager to set session timeouts and even

disconnect users that have, for example, been idle for too long or who might not be using

laboratory resources in accordance with an institution-specific acceptable use policy. Following

UNIX tradition, each part has been designed to do one thing and to do it well. This separation of

duties not only allows the maintainer of each part to stay within his or her area(s) of expertise,

but also has the effect of dividing loosely related functions into separate GUI windows. For

example, the FPGA programmer is separate from the FPGA viewer, allowing the programmer to

be minimized or obscured when testing the FPGA, and vice versa. Alternatively, on large

screens, both may be visible at the same time, with the user choosing where each part should be

located on his or her screen for maximum usability and efficiency. By following this UNIX

tradition, the user is granted more control over how he or she sets up and uses his or her

workspace.

53

Test Equipment Interface

The GPIB interface part, unlike its distant predecessor utilized in the RemoteFPGA

system [42], handles all display and processing of the raw instrument data on the client end. This

increases responsiveness and enables real-time operation; unlike the older system, which

captured raw screen shots of the instrument displays, the uLab system essentially comprises a

complete instrumentation front end, similar to the interfaces that have been integrated with stand-

alone test equipment since the beginning of the digital test equipment era. This allows the

backend test equipment in use to be fully abstracted from the user; aside from various hardware-

driven specifications, such as number of traces and bandwidth, each major type of test equipment

added to the system will present the same generic graphical interface to the user. This also

enables the possibility of using “headless” test equipment, such as some of the more recent PC-

based oscilloscopes that do not contain a display or physical keypad, in the laboratory to reduce

overall cost. In addition, it also enables the repurposing of specialized hardware for more

general purposes without the added complexity this often brings; for example, the spectrum

analyzer server included in the uLab software package interfaces with an Agilent CDMA test set,

allowing use of the spectrum analyzer functionality buried within that specialized equipment

without requiring the user to first understand how to operate the basic functions of the test set.

The oscilloscope part is shown in Figure 7; this image was taken while using the author's four-

channel, GPIB-capable Tektronix oscilloscope to capture and analyze a high-voltage transient.

It should be noted that the general principles discussed herein are not only applicable to

GPIB. The author had a need to access GPIB-based test equipment at this time of this writing,

54

F
ig

ur
e

7:
 T

he
 u

L
ab

 o
sc

il
lo

sc
op

e
fr

on
te

nd
 p

ar
t,

sh
ow

in
g

a
hi

gh
-v

ol
ta

ge
 tr

an
si

en
t a

nd
 th

e
us

e
of

 a
 z

oo
m

 r
eg

io
n

55

hence the inclusion of GPIB-access daemons in the uLab software, but the principles

documented above are applicable to newer interfaces as well. As long as the manufacturer

provides a programming reference manual that is not protected by a non-disclosure agreement

(NDA) or similar legal instrument, new backend server daemons can be written to interface with

test equipment over almost any hardware interface. In fact, the provided GUI client parts may be

used with new backend daemons utilizing a non-GPIB hardware interface. Special effort was

made to ensure that the test equipment client parts use a generic protocol that should be

applicable to all test equipment within a particular class; therefore, for example, the oscilloscope

client part and protocol should be usable with any type of oscilloscope backend interface

daemon. GPIB interfaces were implemented primarily because of the low cost of GPIB-enabled

test equipment, the fact that a GPIB interface is all that typically is required to obtain adequate

functionality from oscilloscopes and other signal analyzers, and the fact that most GPIB-enabled

equipment manufacturers freely provide protocol documentation for those instruments. Newer

equipment interfaces, such as USB, tend to be far more restricted and poorly documented, if

publicly documented at all; this may be part of an effort to force the acquisition of expensive

interface software licenses, simple oversight on the part of equipment manufacturers, or some

combination of both. Regardless of motives, this effectively prevents usage of new, low-end test

equipment from certain manufacturers in a laboratory of this type. Fortunately VXI-11, a

relatively new, publicly documented industry standard [89], is coming into use by major

corporations, such as Tektronix, LeCroy, and Agilent. Additionally, an open-source Linux library

supporting this protocol is available for use [90]. VXI-11 is effectively a full, proper

replacement for GPIB, utilizing Ethernet connectivity and providing a fully documented

56

command-based interface to the test equipment. The author recommends that only GPIB,

VXI-11, or similarly fully open and documented equipment be utilized in new remote access

laboratories, as this will not only ensure reliable operation of the resultant laboratory, but also

will send a strong message to test equipment manufacturers regarding the continuing need for

open-protocol access to test equipment.

FPGA Viewer Part

Because this particular laboratory will be used primarily for FPGA design, the

architecture of the FPGA viewer part will be discussed. The FPGA viewer is essentially a full

rewrite and extension of the original FPGA remote access solution created by the author and

deployed in 2009 at NIU [42]. It uses a hardware abstraction module, contained within the

students' FPGA design, that interacts with a given set of signals. This abstraction module then

transmits current signal levels to the hardware-access server via a standard serial link, while

allowing a second set of signals to be controlled by the hardware-access server via the same

serial link. The hardware-access server forwards this basic serial communication protocol over

the network to the client part, which then interprets the data and displays the current status of the

virtual lights, switches, and displays. The abstraction module also includes the ability to read

and write to either internal block RAM or external SRAM; when interfaced with the client part,

this allows block-data-based algorithms, such as image processing, to be implemented on the

FPGA, then to be tested easily using the FPGA viewer client part. A final feature, implemented

within the client part itself, is the ability to run a batch test and record the results. This batch-test

57

feature takes a list of inputs from a simple text file, sequentially applies them to the 16-bit data

bus, and records the results in a second text file. The hardware abstraction module itself did not

need alteration to work with the newly rewritten hardware-access daemon and client part;

therefore, it is the only portion of the original remote access solution still in use as of this

writing. The internal architecture of this FPGA debug module is shown in Figure 8.

While the FPGA interface could be implemented with a second, dedicated FPGA, or

possibly even utilizing JTAG to directly read and set FPGA pin states, the described solution

contains several benefits when compared to these other alternatives. A second, dedicated host

FPGA would both add expense to the system and require a rich interconnect to the target in order

to be useful. Even more problematic, JTAG pin commands are not standardized across FPGA

manufacturers, or even FPGA types, and are often considered trade-secret or proprietary

information. By contrast, the described access solution allows abstraction of many different

FPGA types because it does not utilize any external pins to link with the user's hardware design;

stated another way, the user can create a generic FPGA hardware design and rely on the

hardware abstraction module for all input/output. This access method also allows the creation of

virtual hardware resources; for example, the provided module emulates both an LCD display and

a 7-segment LED display, allowing the student to learn about both display types and, in fact, to

design hardware that is capable of driving them, without requiring a physical 7-segment or LCD

display to be attached to the FPGA hardware. The results of driving the provided interface

signals are displayed in real time on the FPGA viewer client part, as if the student were

observing a physical display on a development board in the laboratory.

58

F
ig

ur
e

8:
 F

P
G

A
 d

eb
ug

 m
od

ul
e

in
te

rn
al

 s
tr

uc
tu

re

59

FPGA Programmer Part

The FPGA programmer is a radical departure from previous methods. Prior to this

remote laboratory, the author was forced to use Xilinx's iMPACT CableServer running on

dedicated i386 machines with no encryption or access control. Furthermore, this original system

required the use of expensive, Xilinx-specific programming cables and pods to function. Much

of this was due to the obscurity of the JTAG commands needed to program a .bit file into a

Xilinx FPGA; the iMPACT software was the only widely known software package able to

properly program the FPGA. Since then, the author has become aware of a small suite of tools

which can convert the .bit file into a series of JTAG instructions contained within a Serial Vector

Format (SVF) file. The SVF file can, in turn, be “played,” or its instructions executed, over a

JTAG link, via a small open-source SVF player application. These two applications provided the

first hints that the prior dependency on the closed-source Xilinx programmer could be broken;

however, an expensive JTAG pod and i386 machine still are needed to make this solution work.

Late last year, an interesting new development tool, called the Raspberry Pi, became

widely available. The Raspberry Pi is a low-cost, low-power, single-board computer built

around a 600MHz ARM processor. It provides user-accessible GPIO, two serial ports, two USB

ports, and a network connection; it also can utilize stock Debian Linux. Together, these features

make the Raspberry Pi a nearly perfect hardware interface server [23]. Upon obtaining one of

these devices, the author ported the SVF player to use the GPIO pins of the Raspberry Pi, then

connected a Spartan 3 FPGA to the GPIO interface, and was rewarded with a working FPGA

programming solution that was built entirely on open source. The open-source .bit to SVF

60

conversion utility was subsequently and rapidly ported to the new Spartan 6 series of FPGAs

through the use of a standard Spartan 6 FPGA development kit. Once the Raspberry Pi FPGA

programmer concept was proven, a simple Kerberized access daemon was written, and its

associated client part was created. Afterward, the FPGA viewer was tested over the built-in

serial port of the Raspberry Pi, proving that the Raspberry Pi can be considered a complete

replacement for the previously used i386 machines and their associated JTAG interfaces.

The Raspberry Pi allows a complete FPGA hardware-access server and target hardware to

be contained in a small, low-power package, referred to hereinafter as a “pod.” These pods can

be generalized to support any type of hardware, as long as any required interface software can be

compiled and executed successfully on the ARM architecture. Due to the small size and low cost

of each pod, providing sufficient remote hardware resources to accommodate an entire class of

students should prove both practical and economical. Furthermore, the fully open-source nature

of the pods allows customization to suit any needs within a given laboratory, and allows

immediate patching of any bugs or security holes that may be encountered without having to

wait for an update from the device manufacturer. Pods may be either diskless or contain their

system files on an integrated Secure Digital (SD) card. Since the FPGA pods in the uLab system

are contained within the cluster, they have been installed, along with the terminal services, as

diskless nodes to prevent unnecessary wear and tear on the Flash-based SD cards. A photograph

of a single Spartan 6-based pod is shown in Figure 9. The Raspberry Pi is mounted on top of the

Spartan 6 development board, with the USB connection to the integrated UART of the FPGA

visible on the right and the JTAG/power wiring shown in the middle of the photograph. The

flying leads terminating on the left side of the photograph are normally used to provide electrical

61

F
ig

ur
e

9:
 S

in
gl

e
Sp

ar
ta

n
6

ha
rd

w
ar

e
de

ve
lo

pm
en

t p
od

62

power to a second pod, reducing the number of separate power supplies required for the

laboratory system installed at Northern Illinois University.

Final Design

The final design consists of five Spartan 6-based FPGA development pods

(pi001.cluster90.edu through pi005.cluster90.edu), with the central arbiter installed on the master

server (master001.cluster90.edu). Each pod consists of a diskless Raspberry Pi and a Digilent

Spartan 6 development board, with the Raspberry Pi taking its 5V power directly from the

Digilent board. Each Raspberry Pi utilizes a specially created SD card image that contains a

read-only boot partition and the requisite kernel command line to enable booting via NFS. Each

pod is joined to the Kerberos realm through the use of the TDE Realm Bonding utility, as is the

machine running the central arbiter. All services are automatically started on boot via the

standard Debian startup sequencing (init) system, with time from pod power application to full

service availability typically several minutes. Machine startup order is not critical, with the

exception that the master node (master001.cluster90.edu) be started before any other nodes

because it contains all of the services needed for diskless client startup and operation. If diskless

clients were not utilized, the servers and nodes could be started in any order, although portions of

the system would remain unavailable until sufficient resources were brought online.

63

Scalability and Reliability

Scalability of this final component of the uLab remote laboratory is, like the terminal

services component, limited primarily by the performance of the central arbiter. Similar to the

terminal services discussion, the best solution for mitigating this bottleneck is the provision of

several arbiters utilizing round-robin DNS or a similar load-balancing scheme. Because all

reservation and session information is stored in a central MySQL database, many such arbiters

may be employed to distribute the network and CPU load across multiple machines. Each arbiter

must contain a copy of the central arbiter Kerberos ticket; therefore, each arbiter is a potential

security risk and must be physically secured against attack. If any arbiter were to be breached

and its persistent Kerberos ticket obtained, the attacker would gain access to any hardware-

access servers that originally were linked to that arbiter. This risk can be mitigated somewhat

through the use of several unique Kerberos tickets, one for each arbiter. While this will not be of

benefit until an attack has been detected, it will prevent the entire system from going offline

while new Kerberos tickets are generated. If this scheme is used, the compromised ticket simply

could have its access revoked on each of the hardware-access servers–without requiring

revocation of other arbiter tickets and subsequent temporary loss of access from uncompromised

arbiters.

All other components of the remote hardware access system should scale nearly linearly

with the number of available hardware-access servers. If a single pod were to fail, a spare of the

same type could be brought online and added to the hardware access pool, thereby minimizing

any user-visible work interruption. However, if a pod fails, the user will lose all state

64

information from the hardware he or she was previously using; while saved data and displayed

results would not be affected, this could affect certain types of long-running experiments. The

availability level of the pod hardware should, therefore, be matched carefully to the types of

experiments being run on that particular pod to ensure a satisfactory user experience. If a central

arbiter were to fail, the effects would be far more widespread and catastrophic. All students

using that arbiter would be disconnected, and all laboratory workspaces to which the arbiter was

connected would be reset to defaults, with all reservations made through that arbiter being

immediately released. To minimize this risk, the central arbiter(s) should be installed on high-

availability hardware that runs a highly stable operating system.

Miscellaneous Services

Several optional components of the system, such as the Xilinx ISE/EDK and MATLAB,

require a dedicated license server in order to function correctly with floating licenses. This

license server, if needed, should be installed in a dedicated virtual machine that runs one of the

manufacturer-supported Linux distribution versions. VirtualBox [91] is an excellent open-source

virtualization solution, and is recommended as the virtualization host. Similar to other central

points of failure, if the license server were to fail, students would be unable to access any

software packages that relied on it. Consequently, high-availability hardware should be used to

support the virtualization host; in the final laboratory design, the ideal host is the master server

(master001.cluster90.edu), although larger installations may see improved performance if a

single high-availability machine is dedicated as a virtualization host. It is strongly

65

recommended, although not required, that a physical network port be dedicated to the license

server's virtual machine; this ensures that the MAC address of the license server is never

confused with the MAC address of the host machine, and makes replacement of failed host

hardware somewhat easier.

DISCUSSION AND SUMMARY

Because a major goal of this research is not only to prove that a fully open-source remote

laboratory can, in fact, be built, but also to ensure the sustainability of such an environment for

multiple institutions to use, all source code written for the uLab system has been released in a set

of Git trees. At the time of this writing, the uLab system uses donated space in the TDE project's

infrastructure for bug tracking and patch submission; however, this may change in the future as

the project grows more popular and more individuals begin to contribute code and resources. As

of this writing, project code repositories are available at http://ulab.trinitydesktop.org;

authoritative protocol documentation for developers also is included in a text file within the

hardware-access package Git tree. Additionally, a highly condensed set of installation

instructions for a lab using the design detailed herein is available at the same location. These

instructions are designed to be read and understood by a Linux system administrator or similarly

qualified individual, and assume familiarity with UNIX-like systems, the Linux command line,

and various configuration files for several software packages. The aforementioned Kerberos

realm setup and management tools have been integrated into the TDE project at

http://www.trinitydesktop.org, and therefore are available in both source and binary form for

TDE R14.0.0 and above.

This research largely accomplished its original goals, described at the beginning of this

work; a functional, secure remote laboratory has been built on fully open-source software that

also can support proprietary tools where needed, such as those required for FPGA synthesis and

http://ulab.trinitydesktop.org/
http://www.trinitydesktop.org/

67

for FPGA routing. Direct access to dedicated hardware is provided through the use of the uLab

client container, which hosts client parts tailored to the needs of particular hardware types.

Inexpensive laboratory hardware “pods” were created to make deployment of a large laboratory

economical and practical; five of these pods were installed in the laboratory at Northern Illinois

University. All pods host Spartan 6 FPGA development boards sourced from Digilent, Inc. A

single terminal services node with 12 Opteron cores and 24GB of memory was installed in the

laboratory, and remote desktop functionality, including Kerberos-based single sign-on, was

verified. Finally, the new Kerberos realm control tools and other infrastructure components were

installed on two dedicated servers, and full functionality of the infrastructure components,

including the disk-related Infiniband links, was verified. Link speed was identified as a critical

parameter, and students with downstream link speeds below approximately 3Mbps may

experience difficulty using the remote laboratory. This may be optimized in the future as the

FreeRDP project continues to work on the xrdp servers; however, further research needs to be

done to identify the source of observed bandwidth surges and related interface stalls on slower

connections. A block diagram of the completed laboratory, as installed at Northern Illinois

University, is shown in Figure 10, and a photograph of this laboratory in its native environment

is shown in Figure 11.

Future Work

While a capable remote laboratory system, fully usable for remote FPGA development,

has been presented, there are several opportunities for enhancement present within the uLab

68

F
ig

ur
e

10
:

In
te

rn
al

 s
tr

uc
tu

re
 o

f t
he

 u
L

ab
 in

st
al

la
tio

n
at

 N
or

th
er

n
Il

lin
oi

s
U

ni
ve

rs
ity

(c
on

tin
ue

d
on

 fo
llo

w
in

g
pa

ge
)

69

F
ig

ur
e

10
:

In
te

rn
al

 s
tr

uc
tu

re
 o

f t
he

 u
L

ab
 in

st
al

la
tio

n
at

 N
or

th
er

n
Il

lin
oi

s
U

ni
ve

rs
ity

(c
on

tin
ue

d
fr

om
 p

re
vi

ou
s

pa
ge

)

70

Figure 11: uLab installation at Northern Illinois University

71

system at the time of this writing. The laboratory, as currently installed at Northern Illinois

University, does not include signal generation or waveform capture equipment; future

development should concentrate on the creation and interfacing of a fully open-source and open-

hardware oscilloscope pod. The author is aware of at least one FPGA-based oscilloscope project

which fits these criteria; a developer interested in accomplishing this task would need to create

the interface daemon between the oscilloscope module and the uLab Kerberized network. The

existing GPIB interface server can be utilized as a template to reduce the overall work needed to

create the interface server, while the client part should need no modification, as discussed earlier.

In a similar manner, a fully open-source and open-hardware signal generator pod may be created,

although such a pod will require the writing of an interface daemon and a client part, since no

client part currently exists for a signal generation tool. Both pods preferably would utilize a

Raspberry Pi as the test-module-to-network interface in order to lower overall laboratory cost

and power consumption.

A touch screen was specified for eventual use in the laboratory in order to provide a

simple interface that could be used by a laboratory manager to accomplish basic management

tasks, such as viewing the laboratory state, terminating user sessions if necessary, and marking

machines and pods as online or offline. This interface was not developed as part of this thesis;

therefore, it presents an opportunity for anyone interested in touch-based interfaces, namely to

create a functional and efficient laboratory management system. It should be noted that the use

of touch in this area is not in conflict with previous statements related to the superiority of

mouse-and-keyboard driven interfaces for engineering; rather, laboratory management, as with

other industrial control and automation applications, is simply an area in which the high I/O

72

bandwidth of a mouse-and-keyboard-driven interface is not required. This touchscreen interface

should run on a dedicated, low-power system, such as the Raspberry Pi, and utilize a secure form

of passwordless, Kereberized authentication, such as that provided by SmartCards and their

readers. Since TDE includes software to handle SmartCard logins, the existing TDE-based

functionality simply could be extended as needed to accomplish this goal. It should be noted that

the usage of an on-screen keyboard or any other means of on-screen authentication data entry is

inherently insecure and should be avoided wherever possible.

Another area of possible future work relates to the integration of the uLab system with

electromechanical laboratories, such as an electrodynamics laboratory. An interface pod could

be used to control motors, switch gear, and other equipment in such a laboratory, while the

oscilloscope pods, mentioned earlier, could be used as monitors. Where needed, standard GPIB-

based test equipment, such as multimeters, could be added to the system via appropriate interface

daemons and client parts. Video feeds of running electrodynamics experiments could be

provided via a standard USB UVC-compatible webcam; this would require a dedicated camera

interface daemon using V4L2 and a new client part for viewing video and audio.

A final area of possible enhancement relates to collaborative tasks on the remote

laboratory system. It may be advantageous to provide a means for instructors to interact directly

with their students in real time; such interaction could take the form of IRC chat, collaborative

document editing, such as that available through an Etherpad instance, or even

videoconferencing if link bandwidth is sufficient. All of these potential interaction methods are

available through the use of existing open-source software; therefore, installing them should be a

relatively simple matter. Once installed, however, they should be integrated with the Kerberos

73

realm in such a way as to retain the single sign-on experience, and must also be secured and

encrypted to ensure that eavesdropping, spoofing, spamming, or malicious destruction of data

cannot occur.

REFERENCES

[1] The first computers: history and architectures. Cambridge, Mass: MIT Press, 2000.

[2] Computer Terminal Corporation, “The Datapoint 3000.”

[3] B. Ram, Computer fundamentals: architecture and organization. New Delhi: New Age
International, 2000.

[4] J. P. Kanter, Understanding thin-client/server computing. Redmond, Wash: Microsoft Press,
1998.

[5] R. W. Bemer, “How to Consider a Computer,” Automatic Control, pp. 66–69, Mar-1957.

[6] J. McCarthy, “REMINISCENCES ON THE HISTORY OF TIME SHARING.” [Online].
Available: http://www-formal.stanford.edu/jmc/history/timesharing/timesharing.html.

[7] P. E. Ceruzzi, A history of modern computing, 2nd ed. London, Eng. ; Cambridge, Mass: 
MIT Press, 2003.

[8] W. J. Glenn, MCSE: Exchange 2000 Server Administration Study Guide. Hoboken: John
Wiley & Sons, 2006.

[9] B. G. Lipták, Instrument Engineers’ Handbook, Third Edition, Volume Three: Process
Software and Digital Networks, 3rd ed. CRC Press, 2002.

[10] K. Johnson, “Chrome OS: Return of the Dumb Terminal,” T-GAAP.

[11] G. B. Shelly and H. J. Rosenblatt, Systems analysis and design. Boston, Mass.: Thomson
Course Technology, 2010.

[12] P. O’Connor, Using computers in hospitality. Australia; [Belmont, CA.?]: Thomson, 2004.

[13] L. Torvalds and D. Diamond, Just for fun: the story of an accidental revolutionary. New
York, NY: HarperBusiness, 2002.

[14] E. S. Raymond, “The X Windowing System.” [Online]. Available:
http://www.catb.org/esr/writings/taouu/html/ch02s06.html.

[15] “A history of Windows - Microsoft Windows.” [Online]. Available:
http://windows.microsoft.com/en-US/windows/history.

[16] T. Berners-Lee, “WorldWideWeb: Proposal for a HyperText project,” 12-Nov-1990.
[Online]. Available: http://www.w3.org/Proposal.html.

[17] “cern.info.ch - Tim Berners-Lee’s original WorldWideWeb browser.” [Online]. Available:
http://info.cern.ch/NextBrowser.html.

[18] S. Deffree, “NeXT Computer debuts, October 12, 1988,” EDN Moments. 12-Oct-2012.

[19] P. Raj, Cloud enterprise architecture. Boca Raton, Fla.: CRC Press, 2013.

[20] D. Kravets, “Guess What, You Don’t Own That Software You Bought,” Threat Level.

[21] B. Proffitt, “Free software for end users facing extinction?,” Open for Discussion. 19-Jun-
2012.

[22] Copyright Office, Exemption to Prohibition on Circumvention of Copyright Protection
Systems for Access Control Technologies. 2012, pp. 65260 –65279.

[23] “Raspberry Pi | An ARM GNU/Linux box for $25. Take a byte!” [Online]. Available:
http://www.raspberrypi.org/.

[24] D. Gentner and J. Nielsen, “The Anti-Mac interface,” Communications of the ACM, vol. 39,
no. 8, pp. 70–82, Aug-1996.

[25] “Has the KDE Social/Semantic Desktop been worth the hassle to anyone?” [Online].
Available: http://kde.6490.n7.nabble.com/Has-the-KDE-Social-Semantic-Desktop-been-
worth-the-hassle-to-anyone-td1200181.html.

[26] A. Prlić and J. B. Procter, “Ten Simple Rules for the Open Development of Scientific
Software,” PLoS Computational Biology, vol. 8, no. 12, p. e1002802, Dec. 2012.

[27] M. Syamlal, T. J. O’Brien, S. Benyahia, A. Gel, and S. Pannala, “Open-Source Software in
Computational Research: A Case Study,” Modelling and Simulation in Engineering, vol.
2008, pp. 1–10, 2008.

[28] E. Schindler, “An Abbreviated History of ACP, One of the Oldest Open Source
Applications,” Great Wide Open. 20-Aug-2009.

[29] Open sources: voices from the open source revolution, 1st ed. Beijing ; Sebastopol, CA: 
O’Reilly, 1999.

[30] R. Hillesley, “GNU HURD: Altered visions and lost promise,” The H Open, 30-Jun-2010.

[31] “GNU General Public License v2.0 - GNU Project - Free Software Foundation.” [Online].
Available: http://www.gnu.org/licenses/gpl-2.0.html.

[32] “Web Server Survey,” Security Space, Research, Feb. 2013.

[33] “OS/Linux Distributions using Apache,” Security Space, Research, Feb. 2012.

[34] “September 2012 Web Server Survey,” Survey, Sep. 2012.

[35] A. Mockus, R. T. Fielding, and J. Herbsleb, “A case study of open source software
development: the Apache server,” pp. 263–272.

[36] R. Freeman, “Configurable electrical circuit having configurable logic elements and
configurable interconnects,” U.S. Patent 4,870,302.

[37] “Xilinx:: Our History,” 02-Jan-2007. [Online]. Available:
http://web.archive.org/web/20070102044237/http://www.xilinx.com/company/history.htm.

[38] “History of Xilinx, Inc.” [Online]. Available: http://www.fundinguniverse.com/company-
histories/xilinx-inc-history/.

[39] “15 Years of innovation,” Xcell, no. 32, p. 64, 1999.

[40] “AR #18053 - XACTstep 6.0.1 - What operating systems (OS) are supported by the XACT
step 6.0.1 software release?” [Online]. Available:
http://www.xilinx.com/support/answers/18053.htm.

[41] “This is the log book for the Sun workstation started 11-JAN-1995.” [Online]. Available:
http://www.pa.msu.edu/hep/D0/ftp/run1/l1/inventory_logs/sun.lbk.

[42] R. Hashemian and T. Pearson, “Teaching Hardware Design with Online Laboratories,” in
Internet Accessible Remote Laboratories, A. K. M. Azad, M. E. Auer, and V. J. Harward,
Eds. IGI Global, 2011.

[43] P. Cotfas, D. Cotfas, D. Ursutiu, C. Samolia, and D. Iordache, “New Tools in Hardware and
Software Design Applied for Remote Photovoltaic Laboratory,” in Internet Accessible
Remote Laboratories, A. K. M. Azad, M. E. Auer, and V. J. Harward, Eds. IGI Global,
2011.

[44] C. Mwikirize, J. Nombo, A. Tumusiime, B. Maiseli, P. Musasizi, T. Sapula, S. Tickodri-
Togboa, A. Mwambela, and A. Jiwaji, “Collaborative Development and Utilization of iLabs
in East Africa,” in Internet Accessible Remote Laboratories, A. K. M. Azad, M. E. Auer,
and V. J. Harward, Eds. IGI Global, 2011.

[45] P. Buschiazzo, M. Niederstätter, and A. Scapolla, “A Lab Server Model for the iLab Shared
Architecture,” in Internet Accessible Remote Laboratories, A. K. M. Azad, M. E. Auer, and
V. J. Harward, Eds. IGI Global, 2011.

[46] C. Maiti and A. Maiti, “Teaching Technology Computer Aided Design (TCAD) Online,” in
Internet Accessible Remote Laboratories, A. K. M. Azad, M. E. Auer, and V. J. Harward,
Eds. IGI Global, 2011.

[47] I. Gustavsson, U. Jayo, L. Claesson, L. Håkansson, K. Nilsson, J. Bartunek, J. Zackrisson,
T. Lagö, J. Zubia, and I. Claesson, “The VISIR Open Lab Platform,” in Internet Accessible
Remote Laboratories, A. K. M. Azad, M. E. Auer, and V. J. Harward, Eds. IGI Global,
2011.

[48] C. Dubey, H. Wong, V. Kapila, and P. Kumar, “Web-Enabled Remote Control Laboratory
Using an Embedded Ethernet Microcontroller,” in Internet Accessible Remote Laboratories,
A. K. M. Azad, M. E. Auer, and V. J. Harward, Eds. IGI Global, 2011.

[49] “Homepage of the Linux NIS/NIS+ Projects.” [Online]. Available: http://www.linux-
nis.org/.

[50] “Samba - opening Windows to a wider world.” [Online]. Available: http://www.samba.org/.

[51] “Kerberos: The Network Authentication Protocol.” [Online]. Available:
http://web.mit.edu/kerberos/.

[52] “Heimdal.” [Online]. Available: http://www.h5l.org/.

[53] “OpenLDAP, Main Page.” [Online]. Available: http://www.openldap.org/.

[54] “ntp.org: Home of the Network Time Protocol.” [Online]. Available: http://www.ntp.org/.

[55] “RFC 2743 - Generic Security Service Application Program Interface Version 2, Update 1.”
[Online]. Available: http://tools.ietf.org/html/rfc2743.html.

[56] “SASL: Simple Authentication and Security Layer.” [Online]. Available:
http://asg.web.cmu.edu/sasl/.

[57] “BIND | Internet Systems Consortium.” [Online]. Available:
https://www.isc.org/software/bind.

[58] “DHCP | Internet Systems Consortium.” [Online]. Available:
http://www.isc.org/software/dhcp.

[59] Intel Corporation, “Preboot Execution Environment (PXE) Specification.” 20-Sep-1999.

[60] “Linux NFS faq.” [Online]. Available: http://nfs.sourceforge.net/.

[61] “coreboot.” [Online]. Available: http://www.coreboot.org/Welcome_to_coreboot.

[62] “tftpd(8) - Linux man page.” [Online]. Available: http://linux.die.net/man/8/tftpd.

[63] “About Infiniband: IBTA.” [Online]. Available:
http://www.infinibandta.org/content/pages.php?pg=about_us_infiniband.

[64] “IEEE 802.3 ETHERNET.” [Online]. Available: http://www.ieee802.org/3/.

[65] “MySQL :: The world’s most popular open source database.” [Online]. Available: 
http://www.mysql.com/.

[66] “pfSense Open Source Firewall Distribution - Home.” [Online]. Available:
http://www.pfsense.org/.

[67] “Project: OCFS2 - oss.oracle.com.” [Online]. Available:
https://oss.oracle.com/projects/ocfs2/.

[68] “The Z File System (ZFS).” [Online]. Available:
http://www.freebsd.org/doc/handbook/filesystems-zfs.html.

[69] “Understanding the Remote Desktop Protocol (RDP).” [Online]. Available:
http://support.microsoft.com/kb/186607.

[70] “FreeRDP.” [Online]. Available: http://www.freerdp.com/.

[71] “X Display Manager Control Protocol.” [Online]. Available:
http://www.x.org/releases/X11R7.6/doc/libXdmcp/xdmcp.html.

[72] “VNC - Virtual Network Computing from AT&T Laboratories Cambridge,” 15-Aug-2000.
[Online]. Available: http://classic-
web.archive.org/web/20000815062533/http://www.uk.research.att.com/vnc/index.html.

[73] “freedesktop.org - Software/PulseAudio.” [Online]. Available:
http://www.freedesktop.org/wiki/Software/PulseAudio.

[74] “KDE - Experience Freedom!” [Online]. Available: http://www.kde.org/.

[75] “GNOME.” [Online]. Available: http://www.gnome.org/.

[76] “LXDE.org | Lightweight X11 Desktop Environment.” [Online]. Available: http://lxde.org/.

[77] “Xfce Desktop Environment.” [Online]. Available: http://www.xfce.org/.

[78] “Cinnamon.” [Online]. Available: http://cinnamon.linuxmint.com/.

[79] “Trinity Desktop Environment.” [Online]. Available: http://www.trinitydesktop.org/.

[80] “The GTK+ Project.” [Online]. Available: http://www.gtk.org/.

[81] “Qt Project.” [Online]. Available: http://qt-project.org/.

[82] “Welcome to KDevelop.org | KDevelop.” [Online]. Available: http://www.kdevelop.org/.

[83] “Eclipse - The Eclipse Foundation open source community website.” [Online]. Available:
http://www.eclipse.org/.

[84] “GCC, the GNU Compiler Collection.” [Online]. Available: http://gcc.gnu.org/.

[85] “gplEDA: All things GPL and EDA.” [Online]. Available: http://www.gpleda.org/.

[86] “Home of LibreCAD, 2D-CAD.” [Online]. Available: http://librecad.org/cms/home.html.

[87] “GIMP - The GNU Image Manipulation Program.” [Online]. Available:
http://www.gimp.org/.

[88] “Git.” [Online]. Available: http://git-scm.com/.

[89] “Technical Specifications | VXI Bus.” [Online]. Available: http://www.vxibus.org/?
q=node/206.

[90] S. Sharples, “VXI11 Ethernet Protocol for Linux.” [Online]. Available:
http://optics.eee.nottingham.ac.uk/vxi11/.

[91] “Oracle VM VirtualBox.” [Online]. Available: https://www.virtualbox.org/.

