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This thesis details the design, construction, and operation of a new type of remote 

hardware design laboratory, based on Free and Open Source Software (FOSS).  The need for 

such a remote laboratory is examined, and the new laboratory is put into historical context within 

the computing field.  Prior and current remote laboratories are compared and contrasted with the 

new laboratory, and the advantages and disadvantages of each are discussed.  Detailed 

information on the design of each of the laboratory's three main components is provided, along 

with the general reasoning that produced each component's specific architecture.  Integration 

with test equipment and laboratory hardware is discussed, and scalability and reliability concerns 

are addressed throughout, with methods given to mitigate potential risks.  Finally, a brief 

discussion on continuance of this open-source laboratory project is given, along with a statement 

highlighting the final results of this research project.
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PREFACE

Many years ago, my eyes were opened to the wide, new world of FPGAs via a public tour 

of Northern Illinois University's hardware design laboratory, a world I previously thought to be 

inaccessible to a mere student of integrated circuit design.  Laboratories provide students of all 

disciplines irreplaceable, hands-on interaction with devices and concepts that, until experienced 

personally, are simply abstractions in a textbook–things not to be touched by mere mortals. 

Understanding this, I have worked for many years to extend the transformative laboratory 

experience to students both young and old, utilizing modern technology where possible and 

inventing the rest where needed.  In an era of fast computer simulations and Facebook, hands-on 

interaction with real hardware has fallen by the wayside, considered an inconvenience by many 

or, as one student put it, “the domain of technicians and not engineers.”  My belief is that 

engineers must straddle two worlds, both theoretical and practical, in an effort to create 

meaningful new technologies that will better people's lives for years after their introduction.  One 

cannot properly innovate without a reasonable understanding of a particular technology from 

many different perspectives; only after a particular technology has been observed, probed, and 

characterized can our intuition take us to the next levels of form and function.

The remote laboratory described herein is my contribution to making real hardware and 

design tools available in a convenient manner to all who are interested, regardless of location or 

current degree of skill.  To ensure that readers are able to clearly understand the underlying 
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technology and factors driving the final architecture, I have organized this thesis in such a way as 

to present the overall design goals of the laboratory, the available technologies at the time of this 

writing, and the reasoning behind the design decisions that were made to advance the stated 

goals.  Less emphasis has been placed on the particular form of the laboratory as installed at 

Northern Illinois University; while important to provide access to the hardware design resources 

at the institution, and as an initial proof of concept, this particular implementation does not allow 

the remote laboratory software to reach its full potential, which would require additional time 

and resources.  Nevertheless, this implementation is the first of its kind and will likely expand in 

the future as interest and support grows.

The reader will note a thread of reliance on open systems throughout this work.  This is 

one of the most important contributions of this laboratory system to the state of the art; prior to 

this work, the only major remote laboratory systems to utilize open source from the hardware to 

the interface were severely lacking in features and capability.  Unwilling to compromise on 

either principles of freedom or functionality, I designed and implemented this laboratory system 

to provide a modern, full-featured, open-source remote hardware design laboratory.  The overall 

system has been pretentiously dubbed the Universal Laboratory, or more conveniently, uLab; this 

name is partially a pun on Debian (which claims to be the “Universal Operating System”) and 

partially a reference to my goal of providing universal access to the hardware and software 

needed to continue the advancement of science and engineering.  For the good of mankind, the 

information and tools required to dream up the next technological breakthrough must never be 

restricted to a small subset of the population; history shows that true innovation tends to come 

from unlikely places, and even with the breakneck pace of modern innovation, the smallest 
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players are sometimes the most influential.  We, therefore, may ignore both history and the 

potential contributions of a single individual only at our own great peril.

It is my hope that this laboratory, someday, and in some small way, may help a student 

somewhere to realize his or her full potential, and that mankind may benefit from the subsequent 

work of that individual.  All who are involved in scientific research or the support thereof have 

inherited this common responsibility: to share what we learn and to ensure that future 

generations may build upon our work, just as we have built upon the work of our predecessors.



INTRODUCTION

Hardware Design Laboratories

A typical hardware design laboratory consists of several workstations and associated 

hardware in an access-controlled room with rigidly scheduled laboratory dates and times.  This 

laboratory model inherently presents several drawbacks.  One of the largest issues with this type 

of laboratory is the low average utilization ratio; there normally are large portions of each day 

that the laboratory is nearly or completely idle with no student access permitted.  Another 

drawback is a relatively short window for laboratory sessions, during which the students are 

more focused on completing particular assignments within the allotted time frame than they are 

on learning vital concepts via semi-structured, hands-on interaction with design tools and 

hardware.  Additionally, in many institutions, there are insufficient resources available to handle 

simultaneous usage by all students within a particular laboratory period; this forces multiple 

students to be assigned to a given workstation and further removes each student from hands-on 

interaction with the design software and physical hardware.

Motivation of Research

The primary goal of this research is to obviate many of the issues associated with a 

traditional hardware design laboratory, as well as to expand the ability of students to engage in 



2

hands-on learning with a combination of physical hardware and industry-standard design tools. 

Secondary goals include cost effectiveness, ease of access, and expandability of the laboratory 

system to accommodate new technologies and custom laboratory equipment.  Free and Open 

Source Software (FOSS) will play a large role in achieving these goals, and also will help to 

ensure reliability and scalability of the resultant design.  To avoid software compatibility issues, 

and to ensure that a wide variety of students are able to access the laboratory regardless of the 

type of computing device they own, a full laboratory workspace will be made available to any 

network-enabled device that supports the Remote Desktop Protocol (RDP), which is now a de 

facto standard.  This customizable workspace will present a wide array of engineering design and 

simulation software, as well as the software required for physical hardware access, to the student 

via a familiar and powerful Windows, Icons, Menus, and Pointer (WIMP)-based desktop 

interface.

From an institutional perspective, this type of laboratory provides several distinct 

advantages.  By owning a central, homogeneous system that runs on server-grade hardware, 

maintenance is simplified and downtime is reduced.  Adding new hardware for a specific 

laboratory becomes a simple matter of installing the additional resources in a proper location 

with network access, and informing the central system of the new hardware's location and 

purpose.  It is no longer necessary to install copies of engineering design software on the general 

purpose computers in a computer laboratory; students who are enrolled in hardware design 

courses simply may connect to the laboratory if they wish to utilize the associated design 

software.  This keeps general purpose computing laboratory maintenance to a minimum; in some 

cases, it even may be possible to replace the general-purpose computers found in such 
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laboratories with low-power thin clients connected to one or more central laboratory systems. 

Another significant advantage of the new laboratory is that the students no longer have direct, 

physical access to expensive and scarce engineering hardware, minimizing the risk of damage. 

This new laboratory system can, therefore, be used to allow controlled, safe access to hardware 

that may have been previously unavailable to most students due to damage and/or safety 

concerns.



BACKGROUND

Origins of Remote Computing

Remote computing traces its origins to a time when general-purpose computers were 

expensive and relatively rare.  These early computers were also large, power-hungry machines, 

requiring highly specialized building infrastructure to keep them operational [1].  While the 

earliest forms of these machines utilized non-interactive, batch-oriented, input/output methods, 

such as punched cards and teletypewriters, need for truly interactive access was growing.  The 

earliest dumb terminals, also known as “Glass TTYs,” became available in the late 1960s, in the 

form of such machines as the Datapoint 3300 [2].  It would be several years before RAM became 

inexpensive enough to allow the first intelligent terminals to be manufactured.  These terminals 

allowed less bandwidth to be used to show the same information that a dumb terminal could 

display; this was due to the presence of a local processor that was capable of performing certain 

limited display operations without direct, low-level involvement of the remote computer [3]. 

These types of systems can be considered the distant ancestors of modern terminal services, 

which allow a user to use a Graphical User Interface (GUI), executing entirely on a remote 

machine through the use of an appropriate thin client device [4].

A second critical development occurred even earlier, in 1957, with the introduction of the 

concept of time sharing.  Time sharing was first introduced as a concept by Bob Bemer in 

Automatic Control [5], and would be successfully implemented on an IBM 704 later that year 
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[6].  The concept of time sharing exploits the fact that an individual user often presents “bursty” 

demand to a given machine.  This is because most interactive use patterns, such as word 

processing, leave the machine idle between commands or even keystrokes, yielding a low 

average utilization of the CPU.  By allowing multiple users to utilize the same hardware, the 

average utilization of the CPU increases with little noticeable effect in the machine's 

interactivity, thus making maximum use of a scarce resource.  A limit is eventually reached when 

the average utilization of the CPU nears 100%; however, this merely sets an upper boundary on 

the maximum number of simultaneous users and does not detract from the desirable efficiency 

increase gained from implementation of the time-sharing concept.

By leveraging both the time-sharing concept and the existence of relatively inexpensive 

terminals, new uses were found for computers that otherwise would have been impractical or 

impossible due to the expense of a typical mainframe [7].  Over time, additional advantages of 

this model were discovered, including high reliability, high resource efficiency, and relative ease 

of maintenance; most of these advantages were inherited from the mainframes typically used to 

drive this type of system, and others were inherited from the well-known administrative and 

control advantages of centralized systems [8].  The concepts underlying both time sharing and 

terminals remain in use to the present day, although in different forms and implementations.  One 

of the most popular forms of this model, as of this writing, is the Internet itself; many large 

websites are served by expensive, dedicated server farms, analogous to mainframe computers, 

while the client-side Web browser takes on the role previously played by intelligent terminals [9] 

[10].  A lesser known, although important, implementation of this model is generally called 

terminal services.  In this system, a large number of graphical terminals are connected to one or 
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more central servers, with all application processing being done on the remote server.  Given 

sufficiently high link speed, a user of the terminal services should see little to no difference as 

compared to usage of a local machine [11].

The Personal Computer Revolution

As faster and less expensive microprocessors were developed, the advantages of time-

sharing systems became less pronounced, while the disadvantages of the systems remained 

profound.  Time-sharing systems were considered somewhat unreliable because fluctuations in 

the instantaneous number of users on such systems could drastically affect performance at any 

given time [12].  A typical time-sharing system operated under the control of a single 

organization, and, as such, presented several opportunities for abuse.  Central control of a 

computer system guarantees that the owner of such a system can deny access to any user for any 

reason at any time.  The central system provides a single point of failure and is not usually a 

guaranteed service; therefore, its continued existence cannot be relied upon for any significant 

period of time.  On a more sinister note, a centralized system also can be used to hold users' data 

hostage, possibly forcing users to pay an arbitrary fee for continued access to their own data.

Given these significant drawbacks, it is not surprising that the Personal Computer (PC) 

revolution occurred as the price of minicomputers and workstations dropped low enough to 

allow an average technically-minded individual to own his or her own computer.  This, in turn, 

encouraged a culture of unprecedented, widespread, low-level machine knowledge and freedom 

to tinker; in this culture hackers wrote programs for the machines they owned and shared these 
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programs among members of various dedicated technical groups.  One of the most widely known 

and used products of this unique culture is Linux itself, originally developed by Linus Torvalds 

on a custom-built 386 PC in order to address limitations he saw in MINIX [13].  Due to, in no 

small part, individuals such as Torvalds, the years leading up to the introduction of the World 

Wide Web saw explosive growth in new software and in expansion of tasks to which computers 

could be applied.  For the first time, the WIMP GUI was made available to users at home through 

products such as the X Windowing System [14] and Microsoft Windows [15]; this, in turn, 

fueled another wave of innovation as people found new uses for their computers.  Interestingly, 

for many years after widespread adoption of the GUI, existing communication links remained 

insufficient, primarily due to a lack of both bandwidth and availability, to support the existence 

of anything resembling the old mainframe/terminal model.

Return to Centralized Services

The first foundations for the return to the mainframe/client model were laid with the 

introduction of the World Wide Web.  Originally conceived as a means for anyone to be able to 

author and edit shared documents across the world [16], the first implementation of HTTP only 

allowed read-only access to documents when used outside of the commercially unsuccessful 

NeXTSTEP operating system [17] [18].  Over time, as communication links improved and 

broadband became available, people became more reliant on Internet access to a relatively small 

number of major information sources, thus bringing centralized systems back into mainstream 

usage for the first time since the introduction of the PC.  After the introduction of the cellular 
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telephone, and subsequent development into the now ubiquitous smartphone, consumers have 

embraced a return to the centralized architecture of the 1970s for many of the same reasons that 

drove acceptance of the original time-sharing systems.  Many consumers simply want a 

lightweight, low-power device that, in exchange for a service fee, allows communication with 

other users and access to various sources of information.  Much like the mainframes of 

yesteryear, these sources of information are large, dedicated server farms that would be 

impossible to carry around in daily life [19].  Earlier, these consumers would have been forced to 

purchase a PC to access these information and communication resources; now they are able to 

obtain the same level of service via their smartphone.  As a result of these changes, we fully have 

entered a “cloud”-oriented, post-PC era, one in which the service model originally introduced 

with mainframes and terminals is dominant once again.

Post-PC devices, while offering clear advantages in terms of human communication and 

ready access to several types of information, nevertheless inherently possess several severe 

drawbacks.  Many post-PC devices, such as cellular telephones, rely on software which, under 

United States copyright law, is licensed property [20], owned and controlled by the original 

manufacturer, a software development firm, or, in some cases, even the carrier from whom a 

person has purchased a telephone.  Because most telephones, tablets, and other consumer devices 

contain firmware which prevents the usage of unapproved software [21], under United States law 

the consumer cannot legally use the device for any purposes other than those expressly permitted 

by the device's legal owners and any active Copyright Office rules [22].  This has the effect of 

drastically increasing barriers to entry for anyone who may wish to engage in hands-on learning 

of application programming. If left unchecked, this unfortunate effect would tend to centralize 
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the power to develop new applications into the hands of a relatively small number of individuals, 

ensuring that new generations of students would no longer have the advantage of being freely 

able to tinker with and experiment upon their own general-purpose computing devices.

Fortunately, the cost of general-purpose computing hardware is still low enough to be 

affordable by most individuals.  This has allowed the open-source community to continue 

development of new software in much the same manner as during the PC's golden age, albeit at a 

slower pace than before, and also has served to offset many of the high barriers of entry into a 

typical smartphone ecosystem.  More recent developments include the repurposing of 

semiconductors that were originally designed for smartphones in order to create a new breed of 

inexpensive, general-purpose computers; developments like this create a climate in which future 

generations will be able to, once again, learn about machine internals and gain direct, hands-on 

experience with programming tools and hardware interfaces.  One of the most prominent 

examples of this type of computer is the Raspberry Pi [23], which, incidentally, plays a 

significant role in driving down the cost of the new laboratory system.

Another result of the proliferation of post-PC devices is the push for post-WIMP GUIs, 

primarily due to the fact that post-PC computers lack traditional input devices, such as a 

keyboard and mouse.  The differences between GUI types are substantial, and selection of the 

appropriate GUI type is critical to ensure that the user can attain maximum productivity for a 

given class of work.  The WIMP GUI  is a somewhat rigid paradigm that forces the user to be in 

control of the machine at all times; that is, the machine generally will not perform any action that 

was not previously commanded.  Additionally, strong emphasis is placed on hierarchical file 

systems, interface permanence, application consistency, and overall worker productivity [24]. 
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By contrast, the post-WIMP GUI is designed primarily for information retrieval and 

interpersonal communication, focusing strongly on searches for existing documents, 

consumption of content, and brief but frequent communication with other individuals; therefore, 

special emphasis is placed on computer prediction of the user's current activity, and proactive 

assistance of the user in that task.  Much of this technology is essential for smartphones and 

tablets due to the low input/output bandwidth typically available between machine and user; 

however, its usefulness and practicality on larger devices is currently a subject of intense debate 

[25].

The Rise of Free and Open Source Software (FOSS)

Free and open source software plays a vital role in scientific and computing research [26], 

enabling the creation of novel systems with state-of-the-art technology [27]; therefore, it is useful 

to understand some of the history and culture that has shaped the open-source movement into the 

form we rely on today.  Early programmable computers were created with heavy influence from 

professors working at universities; much of the design knowledge and computer software for 

these machines was, therefore, shared openly with other researchers.  A prominent example of 

this paradigm was IBM's ACP airline reservation system.  Written for the IBM/360 mainframe, 

the source code was available for anyone to modify, improve, and share with other interested 

parties [28].  Only later, once machine architecture had stabilized and relatively few computer 

types were commercially available, would closed-source computer software such as UNIX and 

VAX/VMX become practical.



11

The free software movement, as we know it today, traces its origins to the MIT Artificial 

Intelligence Laboratory and the collaborative culture that existed in its hacker community before 

that community's demise in the early 1980s [29].  Around this time, new computers were being 

released with proprietary operating systems that could not legally be studied or modified by the 

end user.  As a result, a distinction now needed to be made between the older, traditional, open 

software and the new, closed, licensed software; “free” and “open-source” became meaningful 

terms at this point.  Due, in part, to the refusal of some people, including Richard Stallman, to 

relinquish their freedom of software development and modification, the open-source software 

community was slowly restarted with the primary goal of creating a full-featured, open-source, 

UNIX-compatible operating system.  Interestingly, while Stallman set out to create a complete 

UNIX-compatible operating system, the GNU project would, instead, become primarily known 

for its userland tools, including the GNU Compiler Collection (GCC) used by many developers 

and projects worldwide.  To this date, the GNU project has not produced a GNU/HURD kernel 

that is competitive with any major proprietary or open-source offerings [30]; however, it has 

continued to produce and maintain core development tools and libraries.

Like the GNU project, Linux was born out of dissatisfaction with closed-source, or 

otherwise restricted, operating systems.  Linus Torvalds was a student when he first wrote a 

small terminal emulator to overcome limitations in the restricted MINIX system that came with 

his Intel 386 (i386) computer [13].  Later, this terminal emulator, which only ran on similar i386 

machines, grew into a rudimentary POSIX-compliant kernel.  In and of itself, this was not 

particularly noteworthy, but what happened afterward introduced the world to a new 

development model that was originally ridiculed as doomed to fail.  Torvalds released the first 
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versions of Linux under a license that allowed modification if and only if the changes also were 

made public, and he completely forbade sale of Linux in any form.  After Linux was modified to 

support swap to disk, its popularity began to increase, and Torvalds had to rethink his original 

license.  He was aware of the work of Stallman, and also aware of the other open-source 

developers on which he relied; therefore, he decided to release Linux under the GNU General 

Public License (GPL) [31].  As Linux's popularity grew, more and more people sent in patches to 

add features and to fix bugs; therefore, despite its initial ridicule, this basic development method 

has grown into a worldwide success.  Torvalds' original fears of IP theft never materialized; by 

virtue of its large and active development community, anyone who attempts to fork Linux in 

secret is rapidly left behind as the kernel continues to evolve.  In many respects, the open-source 

concept and development process parallels the best traditions of academia; the original ideas and 

culture that allowed the development of the first computers have, therefore, come back into 

widespread use decades later.

Once the foundations of an open-source, POSIX-compliant operating system had been 

laid down, many other open-source projects found new footing and prospered.  Linux became, 

and still is, the most popular platform for servers [32] [33]; within the past decade it also has 

become usable in the desktop space.  Since the foundation of the GNU project, numerous 

important open-source projects have flourished.  There is insufficient space to do them justice, so 

I only will spotlight a few critical developments.  MIT was responsible for the initial 

development of the now ubiquitous X Window System, of which some variant is in use on 

almost every graphics-enabled, POSIX-compliant desktop or server system worldwide.  In turn, 

two major desktop environments and their associated applications were built on top of the X 
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Window System, namely Gnome and KDE.  On the server side, the Apache HTTP server was 

developed for use on Linux and on other POSIX-compliant systems, and has remained the 

world's most popular Web server for the past 17 years [34].  In light of this remarkable success, 

open-source software is now widely considered a serious contender to commercial, closed-source 

software [35].

Advantages of Linux and FOSS

Advantages of Linux and other free and open-source software include very low barriers 

to entry, a wide variety of high-quality libraries and graphical toolkits with which to build new 

applications, standards compliance, and true multi-user support.  In general, only an inexpensive 

PC with an Internet connection is required to install Linux and to gain access to a wide array of 

open-source development tools.  Linux also supports many different desktop environments; a 

Linux machine can, therefore, be customized to optimize specific tasks, whereas commercial 

operating systems generally provide a single, one-size-fits-all desktop environment.  Unlike 

many commercial operating systems, Linux is fundamentally a multi-user system, supporting 

multiple independent users on a single machine and providing a security framework designed to 

keep user accounts separate and secure.  In general, unless a user has been granted administrative 

privileges or an exploit has been found, it is impossible for a single user to bring down or 

fundamentally corrupt a Linux system; this is an attractive characteristic when considering a 

system for deployment in a collegiate environment.
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Overview of Field Programmable Gate Arrays

The initial version of this remote laboratory primarily targets remote development with 

Field Programmable Gate Arrays (FPGAs); therefore, a brief look at the history of the FPGA 

follows.  The FPGA was originally invented by Ross Freeman [36], a founding member of 

Xilinx [37], to allow customers to define custom, on-chip logic without requiring design and 

manufacture of an expensive Application Specific Integrated Circuit (ASIC).  At the time, 

transistors were an expensive, on-chip resource, and major semiconductor corporations, such as 

Zilog, were unwilling to commit resources to a project that could end up as a commercial failure. 

Freeman left Zilog, along with Xilinx co-founder Bernard Vonderschmitt, to pursue his idea 

through their start-up, Xilinx, funded primarily by venture capital [38].  Xilinx shipped their first 

FPGA, the XC2064, in 1985, leveraging common workstation platforms to support the basic 

design tools needed for programming this new type of device [39] [40] [41].

The fact that the entire development toolchain for all major FPGA manufacturers has 

been completely closed-source from the beginning has led to a number of problems and 

inefficiencies in a typical FPGA development cycle; these start with random failures inside the 

synthesis tools and end with the requirement that an expensive, proprietary programmer be 

utilized to interface with the FPGA device over the Joint Test Action Group (JTAG) interface. 

Furthermore, the closed-source tools are typically compiled for Intel 386-compatible platforms 

only, severely restricting the use of new, power-efficient development platforms and also 

preventing the emergence of self-modifying hardware designs; although such designs have been 
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studied in theory, none have been reduced to practice due to this limitation of the toolchain.

Modern FPGAs can be viewed as a blank integrated circuit containing many different 

specialized components; these components can be dynamically wired together utilizing a 

configurable interconnect fabric.  For example, a typical Xilinx device includes, at minimum, 

clock generation modules, dedicated clock routing buses, small RAM blocks, and I/O buffers. 

Newer devices include more complex modules, such as SERializer/DESerializer (SERDES) 

blocks, to enable high-speed interchip communication.  Fundamentally, though, the basic 

operation of an FPGA has not changed much since its invention.  The FPGA still contains large 

quantities of configurable discrete logic within its fabric, grouped together into slices that are 

then used by the manufacturer-provided toolchain to implement designs described in a standard 

Hardware Definition Language (HDL).  The FPGA remains a popular alternative to custom 

ASIC designs because, in most cases, the slight benefits in unit cost and performance of a custom 

ASIC do not justify the high cost and initial risk associated with such a design.  These devices 

also are ideal for an educational setting, allowing a student to create a custom integrated circuit 

design and actually test that design, instantly, on real hardware with negligible cost to either the 

student or the educational institution.  FPGAs, therefore, enable hands-on learning in an area that 

was previously inaccessible to students, and also largely supplant the prior methods of wiring 

new designs by hand from discrete logic gates.

Past and Present Remote Laboratories

Several attempts have been made over the years to create a remote laboratory 
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environment that can supplant the existing physical laboratories present in most universities. 

Many remote laboratories focus on simulation only, or on point-and-click guidance through a 

specified, simple experiment.  Additionally, many of these laboratories do not offer terminal 

services, and those that do are heavily reliant on Microsoft Windows and other closed-source 

software for their operation.  Due, in part, to the various shortcomings in each remote laboratory 

system, none has seen widespread adoption in education.  It is the author's belief that in order for 

any new technology to be widely adopted, and especially if it is to supplant an existing 

technology, the new technology must provide all the features originally present in the existing 

technology, as well as contribute at least one new and useful feature that justifies the migration. 

Another method to force widespread adoption historically has been deprecation and removal of 

the older technology; this is problematic because it also has made users of such products 

justifiably reluctant to invest in current systems produced by the same source, especially if the 

current system is considered largely inferior to the older system.

Table 1 provides an overview and comparison of the various types of remote laboratories 

in existence today, including the new remote laboratory system detailed in this document 

(hereinafter referred to as the Universal Remote Laboratory or uLab).  As can be seen, the new 

remote laboratory is the only full-featured system to make extensive use of open-source 

software; this allows the laboratory to be customized to the particular needs of a given institution 

and also ensures that there is some degree of permanence built into the overall system. 

Additionally, the new laboratory is the only laboratory that provides an unscripted, 

reconfigurable workspace to the user; instead of simply altering one or two input variables and 

observing a response, the user is given complete control over a desktop-based development 



17

session, a reconfigurable hardware device, and any test equipment attached to that device, 

thereby closely approximating a typical physical laboratory environment.  This unscripted 

environment inherently includes the ability to use the equipment in unusual and novel ways, or 

even to fail to produce a working experiment; these real-world traits are not present in most 

guided online laboratories.

Table 1: Comparison of Remote Laboratory Features

uLab RemoteFPGA
[42]

SolarLab
[43]

MIT iLab 
[44] [45]

TCAD
[46]

VISIR
[47]

TINI-based
[48]

User access control X X X X X X

Pluggable backend server 
access control

X X X

Encrypted, authenticated 
client-server 
communication

X

Encrypted, authenticated 
inter-server 
communication

X

Single sign-on (SSO) X

Terminal services X X X

Integration with existing 
course management 
systems

Access from new forms of 
computing devices

X X X X X X

Web-based interaction X X X X X

Rich GUI widget I/O
(not camera based)

X X X X X X

Modular design X X

Legend:
X Supported
/ Technically possible with minor changes but not yet implemented
An empty box indicates that the feature is unsupported without major changes to software, hardware, or both.
Please note that only those features mentioned in the referenced sources are included in this table.

(continued on following page)
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Table 1: Comparison of Remote Laboratory Features

(continued from previous page)

uLab RemoteFPGA
[42]

SolarLab
[43]

MIT iLab 
[44] [45]

TCAD
[46]

VISIR
[47]

TINI-based
[48]

Reconfigurable hardware 
connections

X X

Integral surveys and/or 
learning assessment

/ X X

HCI method WIMP WIMP WIMP WIMP WIMP WIMP WIMP

Primary client/server 
programming language(s)

C
C++

Visual Basic LabView
PHP

Java
LabView

LabView LabView Java
MATLAB

Remote development tools X X X

Remote simulation tools X X X X X

Access to physical 
hardware

X X X X X X X

Exclusive, full access to 
physical hardware

X X X X X X X

Inexpensive, low-power 
network to hardware 
interface

X X

Unscripted 
experimentation 
environment

X X X X

Laboratory software 
available as open-source

X X X X X X

Storage for user design 
files

X X

Integral capture and 
storage of experimental 
results

X

Legend:
X Supported
/ Technically possible with minor changes but not yet implemented
An empty box indicates that the feature is unsupported without major changes to software, hardware, or both.
Please note that only those features mentioned in the referenced sources are included in this table.



uLab DESIGN AND IMPLEMENTATION

Design Goals and Laboratory Components

The new remote laboratory system was designed, from the ground up, with scalability, 

reliability, and security in mind.  Single points of failure were determined, and, where possible, 

eliminated through the use of redundant systems.  Where this elimination was not feasible, 

largely due to a lack of underlying network protocol support and global concurrency issues, 

highly reliable systems were utilized.  By transparently distributing session resources across 

multiple systems, both reliability and scalability were enhanced; this is because the central 

servers were no longer directly involved with execution of design tools or access to physical 

hardware.  If a non-central server were to fail or crash, a hot spare can be placed into service 

immediately, thus minimizing disruption to users of the system.  Multiple non-central servers, 

hereinafter referred to as nodes, also could be installed into one remote laboratory system; this 

would provide nearly linear scalability of the maximum number of concurrent sessions as long as 

bandwidth limits were not approached.

The new laboratory system is comprised of three main parts: fundamental infrastructure, 

terminal services, and laboratory workspaces.  Without proper infrastructure, the laboratory 

would degenerate into a loose collection of relatively isolated software with a corresponding 

increase in difficulty of use and management.  Therefore, this discussion will describe 

infrastructure design goals and their practical implementation, and then progress, in a similar
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manner, to the dependent services that comprise the remotely accessible portion of the 

laboratory.  For reference, a simplified, generic laboratory design that uses all three components 

is shown in Figure 1.

Infrastructure

Because this system will be exposed to the Internet and also may be exposed to unsecured 

public networks for inter-server communication, user management and encryption play a large 

role in the design of the laboratory.   Design goals include single sign-on (SSO) capability; 

centralized, point-and-click user management; varying levels of access to laboratory workspaces 

and software; authentication of users and servers; encryption of all communications; and the 

ability to safely place equipment interface servers wherever physically convenient.   While 

several open-source solutions exist that can handle centralized user management, authentication, 

or authorization, including NIS [49], Samba AD [50], Kerberos [51] [52], and OpenLDAP [53], 

none of the existing solutions met all of the design criteria on their own.  Therefore, a custom 

solution was formed through the assembly of NTP [54], Heimdal Kerberos, OpenLDAP, 

GSSAPI [55], and SASL [56], as well as the creation of new GUI and Command Line Interface 

(CLI) tools for realm and user management.

Centralized User Management and Authentication

Kerberos, a key component of the custom solution, is primarily a secure authentication 
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protocol, working through the use of “tickets” to cryptographically grant access to remote 

services.  Each ticket is granted to a user from a central server, on request, via a passwordless 

exchange; at minimum, this ticket guarantees that the ticket holder is who he or she claims to be 

on the network.  Generally, this initial ticket is given in the form of a “ticket-granting ticket,” 

which allows the user to request access to specific services without reentry of the logon 

password.  Once the user has received a service access ticket, all further communication and 

authentication for that service is performed solely between the service provider and the client. 

Tickets are mandated to expire after a certain duration to prevent a wide range of attacks; this 

expiration interval is configurable on the central Kerberos server(s).  Expired tickets may be 

renewed through communication with the central Kerberos server(s), up to a maximum number 

of times specified by the configuration on the central Kerberos server(s).  After all renewals have 

been used, the user must re-authenticate to Kerberos and receive a new ticket-granting ticket to 

continue using services.

Holders of Kerberos tickets are able to establish encrypted communication with remote 

machines after initial authentication.  This allows the entire exchange, from authentication to 

connection termination, to take place within a secure channel, effectively guaranteeing that 

eavesdropping attempts or data injection attacks are not possible if an attacker only has access to 

the communications network.  Additionally, since authentication is an integral part of 

establishing the encrypted connection, all servers and clients “know” who they are 

communicating with at all times.  Kerberos groups all machines with access to a specific 

Kerberos server or set of servers into Kerberos realms, with the name of each realm consisting of 

an uppercase version of the machines' Domain Name System (DNS) suffix.  For example, if a 
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Kerberos server's full DNS name was server1.my.domain.edu, the Kerberos realm would be 

MY.DOMAIN.EDU.

Stand-alone Kerberos has a number of drawbacks that mandate its use with other 

technologies like the Network Time Protocol (NTP) and Lightweight Directory Access Protocol 

(LDAP).  The cryptographic exchange that occurs during authentication is extremely sensitive to 

clock skew, and will fail if the clocks on the two machines involved are offset from each other by 

more than a few minutes.  This mandates the use of a technology such as the Network Time 

Protocol; when such an NTP server is set up on the primary Kerberos server, all configured 

clients automatically can keep their clocks in nearly perfect (<1ms jitter over most links) 

synchronization with the Kerberos system.  In turn, the NTP server is configured to keep its 

clock in synchronization with a global clock reference, such as the NTP pool, or a lower-stratum 

(higher precision), atomic-clock-derived reference, such as a local GPS receiver.

Another significant drawback of most stand-alone Kerberos installations is the difficulty 

of managing users.  Kerberos was designed to store information only directly related to 

authentication; therefore, it does not provide any authorization or user-management related 

information, such as POSIX group membership, POSIX user ID, home directory, or even the 

user's full name.  Without this additional information, Kerebros authentication is nearly useless 

because the systems and servers using such authentication will not generally know what 

permissions to grant each authenticated user.  Therefore, a separate LDAP server is required to 

store this additional information and make it available to Kerberos-enabled systems on request.

A typical LDAP server, such as OpenLDAP, is essentially a network-enabled wrapper 

around a very small, lightweight database.  Its sole purpose is to store and transmit data, on 
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request, over the network.  On its own, an LDAP server provides basic access methods, such as 

password-based login over a (possibly encrypted) network link, but the LDAP server cannot 

natively provide the robust user authentication, ticketing, or encrypted links characteristic of the 

Kerberos system.  Furthermore, a stand-alone LDAP server maintains its own user database, 

which will tend to drift out of of sync with more advanced user management methods, such as 

Kerberos or NIS.  Clearly, some combination of the two services is ideal, and many corporations 

and individuals have combined the two with varying degrees of success.

Kerberos can be configured to store its authentication information on an LDAP server; 

however, this still does not solve the problem of LDAP maintaining a separate user database. 

Therefore, a third piece of software is required, namely the Simple Authentication and Security 

Layer (SASL).  OpenLDAP can be configured to use SASL to authenticate users; SASL, in turn, 

uses Kerberos to authenticate users passed to it by OpenLDAP, as illustrated in Figure 2.  As 

might be obvious at this point, there is a circular dependency loop present for non-local access 

when this system is operating normally.  The presence of this loop, when combined with 

OpenLDAP and Kerberos' arcane and poorly documented configuration files, makes the creation 

of a working server utilizing all three technologies very difficult.  Thus, for the uLab system, 

new open-source tools were created to automatically handle this tedious and error-prone task. 

The new tools also allow easy, point-and-click access to post-setup maintenance functions, such 

as LDAP root certificate updates and administrative password changes; two of the new tools are 

shown in Figure 3.

On the local machine hosting Kerberos and LDAP, the dependency loop is purposefully 

broken at one point; Kerberos communicates to OpenLDAP through a local domain socket 
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Figure 2: Realm controller service interdependency
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Figure 3: Two of the realm management utilities utilized within the uLab system
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(ldapi://), bypassing OpenLDAP's authentication protocols entirely.  Therefore, it is important to 

both keep the realm controllers in a secure physical location and to have no other services of any 

type running on the realm controllers.  The realm controllers are the largest single point of failure 

and security concern of the entire system; if even one realm controller is breached, an attacker 

could gain full access to every machine in the realm.  Similarly, if only one realm controller is 

present, its failure will cause all machines in the realm to reject all non-cached/non-local login 

and service access requests, effectively halting normal operation of the entire realm.  LDAP and 

Kerberos both contain mechanisms to create backup secondary realm controllers that allow the 

realm to continue normal operations if the primary realm controller fails; however, alterations of 

the user directory generally are not possible unless a primary realm controller is present and 

active.

DNS and DHCP

A critically important and often overlooked Kerberos requirement is proper forward and 

reverse name resolution of all servers and client machines within the realm.  This is 

accomplished in the new remote laboratory through the use of the Berkley Internet Name 

Daemon (BIND) DNS server [57], containing correct entries in both the forward and reverse 

DNS files for every server within the cluster.  In a larger network with hundreds of workstations 

and possibly even Bring Your Own Device (BYOD) support, BIND can interface with the ISC 

Dynamic Host Configuration Protocol (DHCP) server [58] to automatically create and remove 

the appropriate DNS entries on DHCP lease allocation/expiry.  For the service to work, the DNS 

name of the Kerberos realm must be resolvable from all member machines within the realm.  If 
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the Kerberos realm's DNS name is not resolvable, Kerberos will fail to work because it will be 

unable to locate the appropriate servers from which to request tickets.  Similarly, if a client is not 

properly entered into the DNS system, the server will refuse to generate tickets for that unknown 

client.

Persistent Data Storage and Diskless Nodes

Because the remote laboratory provides users with access to a desktop and various design 

and simulation tools, some form of user data storage is needed.  To simplify uLab maintenance 

and to limit potential points of failure, a single, large, redundant disk array is provided for this 

purpose.  This disk array also contains, on a separate partition, the operating systems and data 

files of all nodes within the cluster; each node is booted via the Preboot Execution Environment 

(PXE) [59] and the Network File System (NFS) [60], and contains no local permanent storage 

devices.  This architecture allows a failed node to be swapped out simply by replacing the entire 

server and changing its persistent DHCP lease to reflect the new server's MAC address.  No data 

copying or setup is involved; this allows a server to be swapped out (or a spare machine brought 

online) within a matter of minutes, limiting downtime and any related disruption of services.

The central disk array is shared within the cluster over NFS v3; this is a basic file sharing 

protocol that does not allow encryption or authentication.  It is assumed that the internal network 

within the remote laboratory cluster will be physically protected against malicious devices; if for 

any reason this is not possible, then diskless clients should not be used.  If it becomes desirable 

to share the disk array outside of the remote laboratory cluster, NFS v4 should be used because 
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NFS v4 supports Kerberos-based authentication and encryption.  Currently, the uLab system uses 

NFS v3 and permits no direct external access to the disk array.

Each diskless node is not capable of immediately starting the Linux kernel from its 

internal BIOS.  While projects such as CoreBoot [61] exist that would make this feasible in some 

situations, the extreme difficulty of replacing the provided BIOS with a custom bootloader 

makes this impractical for all but the largest server farms.  Instead, the Linux kernel must be 

loaded from an intermediate bootloader, which is, in turn, loaded from the network card's 

network boot system, and, thus, from the provided BIOS itself.  The intermediate bootloader 

used by uLab is PXE; this loader requires both a DHCP and a Trivial File Transfer Protocol 

(TFTP) server [62] to function.  On boot, the network card's firmware uses DHCP to acquire an 

IP address, and also to locate the TFTP server on which the network bootstrap program is 

located.  On acquisition, the firmware downloads the network bootstrap program (in this case, 

the PXE bootloader) into RAM and executes it.  PXE, in turn, queries the TFTP server for valid 

configuration files; these files are searched, in order, from most specific (MAC address) to least 

specific (IP address, then a default file).  Each configuration file contains, at minimum, the 

filename of the Linux kernel and associated Initial Ram Disk (initrd) image to download and 

boot.  Normally, the kernel command line also is specified, which allows the root device to be set 

to the NFS server and path containing the system files for the particular node.  Upon successful 

download, PXE boots the kernel; the kernel, in turn, locates the system files on the specified 

NFS server and mounts that directory as the system root, thus completing the initial stages of the 

boot process.  From this point, boot proceeds normally, as it would on any other Linux system, 

with sequential service startup leading to boot completion.
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As with any centralized solution, there is a bottleneck inherent in the communication 

links connecting the servers to the disk array.  To ensure that sufficient bandwidth is available at 

all times, a dedicated 10Gbps Infiniband [63] system was installed solely to transfer data 

between the terminal service nodes and the server containing the disk array.  Core system files, 

Kerberos packets, and RDP data are transferred over a standard 1Gbps Ethernet (IEEE 802.3) 

system [64] that links all of the disparate nodes together.  Security is ensured by denying users 

direct access to the networking hardware, forcing all requests for data to go through the kernel's 

built-in security protocols.  As mentioned earlier, if this is not possible, then diskless clients 

should not be used; the infrastructure required to support them would present a security risk 

when used outside of a dedicated, physically secured environment.

Configuration and Session Management Database

Many of uLab's remote laboratory services use MySQL [65] to determine the privilege 

level of authenticated users, for statistical tracking, and for service configuration; therefore, the 

central server also provides a MySQL database server instance to the internal network.  This 

instance is strictly off-limits to users of the system, but is accessible from the services running on 

the various remote laboratory nodes.  In general, the databases are intended to be directly 

modified only by a qualified administrator during installation of a new service and by the various 

laboratory services themselves.  Similarly, the statistics gathered are designed to be used by an 

appropriate data mining tool, not obtained directly in human-readable format.  To maintain 

modularity and security, each of the two remote laboratory components stores its information in 
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a separate, self-contained database within the MySQL server, and accesses the appropriate 

database through its dedicated machine user account.

Public Network Interface

A final interface is needed between the remote laboratory cluster and a public network or 

Internet.  This interface should consist of a router with a firewall configured to forward only a 

few select, needed ports onto the public network, thus keeping the internal network separate and 

secure.  Ideally, this firewall would be a stand-alone system that does not run the same base 

operating system as any of the machines in the remote laboratory cluster; this prevents a single 

exploit from being used to take down the entire system, as would be possible in a homogeneous 

environment.  Furthermore, this router should be able to track bandwidth used, hacking attempts, 

and, as the last single point of failure, should be constructed from a high-reliability system. 

pfSense [66], a router built on the Berkley Software Distribution (BSD) and with all of its 

functionality accessible through a web-based point-and-click GUI, meets these needs in the uLab 

system.  pfSense also provides several optional features, such as a built-in Intrusion Detection 

System (IDS) and the ability to block abusive clients.

Final Design

The final infrastructure design for the uLab system uses three separate, high-availability 

servers; a Gigabit Ethernet (GbE) switch; and an Infiniband.10Gbps switch.  One server is 
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dedicated to pfSense (router001.cluster90.edu); this machine accepts a high-speed public Internet 

connection and routes it to a dedicated network port on the master server 

(master001.cluster90.edu).  The master server runs Debian Wheezy; it also contains a large 

Extended File System v4 (ext4) disk array, two GbE network ports, and a 10Gbps Infiniband 

interface card.  This machine hosts DNS, DHCP, TFTP, NFS, MySQL, and Apache HTTP 

services for the entire cluster, and is a member of the internal CLUSTER90.EDU Kerberos 

realm.  In this particular instance, the master server also hosts a copy of the Debian package 

archives over HTTP for access by machines within the remote laboratory cluster; this makes 

software management both faster and more reliable.  The final server (ldap001.cluster90.edu) is a 

dedicated Kerberos realm controller, hosting LDAP, Kerberos, and SASL services for use by the 

entire CLUSTER90.EDU Kerberos realm.

Scalability and Reliability

LDAP, Kerberos, and MySQL are known to reliably scale to thousands of clients with 

ease, require little bandwidth, and support inter-machine replication; therefore, I will treat access 

to those services as essentially unlimited.  However, both the centralized disk array and router 

present challenges to scalability.  Some of the scalability and reliability concerns of the disk 

array can be mitigated through the use of a clustering file system, such as Oracle Cluster File 

System v2 (OCFS2) [67] or the Z File System (ZFS) [68]; however, this can lead to a 

performance loss, depending primarily on the speed of the interconnect between the replicated 

file servers.  If diskless clients are in use, they should be allocated in racks with a dedicated disk 
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array for their system files placed within each rack, with only the global user data store utilizing 

the clustered file system.  In a similar fashion, limitations of a single central router can be 

worked around through the use of several routers, with clients being randomly routed to a 

specific router on initial connection through a round-robin DNS scheme.  Therefore, limits on 

scalability should not be apparent within the fundamental architecture until the aggregate 

network bandwidth between servers is nearly saturated.

Terminal Services

Unlike most competing remote laboratory solutions, the uLab system does not use a Web-

based interface to any of its services, opting instead to provide a traditional, feature-rich, WIMP-

based GUI in order to provide an experience that is as close to real-world work as possible.  As 

such, it is important to provide access to a full desktop environment in which the design tools 

and remote laboratory GUI can be utilized effectively and efficiently.  For this reason, terminal 

services are provided to the students over Microsoft's industry-standard Remote Desktop 

Protocol (RDP) [69].  Normal terminal services over RDP, such as those provided by Microsoft 

or the open-source FreeRDP project [70], are not easily scalable due to the fact that each client 

must connect to a given server.  Providing additional terminal servers, while alleviating 

overcrowding on existing servers, brings additional challenges in the form of session 

consistency, server management, and active session resumption after disconnection.

Design goals for the terminal services component of uLab include ease of use, single 

sign-on, persistent sessions, persistent user data, efficient use of bandwidth, access to shared data 
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files (such as course information and digital drop boxes), and usage of a standard protocol that 

most network-enabled computing devices can utilize.  Additionally, the terminal services should 

provide a wide range of appropriate hardware design and simulation tools to allow users to select 

the best tool for a task, instead of being forced to use a limited or incorrect tool simply because it 

was the only workable tool available on the remote system.  The hardware used for the terminal 

services nodes should be powerful, with multiple CPUs and a large amount of RAM installed to 

support multiple users running complex simulation or synthesis tasks simultaneously.

The RDP protocol fundamentally provides the ability for input devices, such as a mouse 

and keyboard, to transmit input actions over a network to a terminal server for processing. 

Similarly, it also provides the ability for the terminal server to send back the current remote 

screen as a series of compressed images, transmitted only when an item or items change on the 

remote screen.   At one time, various portions of the basic RDP protocol were covered under 

various patents; however, most (if not all) of the relevant patents have expired in the United 

States.  If there is any concern of patent violation in the intended application (i.e., commercial 

use instead of computing research in areas where any RDP-related patents still are valid), then 

alternative, but less widely supported, equivalent protocols, such as the X Display Manager 

Control Protocol (XDMCP) [71] or Virtual Network Computing (VNC) [72], with a separate 

PulseAudio [73] service, should be used instead of RDP.  Encryption is supported by RDP, but is 

relatively weak by modern standards; there also is no way to increase the nominal encryption 

level of the terminal services when used with most existing remote desktop clients.  When using 

RDP or a similar protocol, all computations, input processing, and display actions are performed 

on the remote server, reducing the client to the role of a dumb terminal.  This characteristic 
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allows almost any computing device to connect to the system and provide a basic level of 

functionality; only a network-enabled computing device and its associated keyboard, mouse, and 

display are required to interact with the remote terminal server.

To provide redundancy and scalability to uLab's terminal services, the xrdp server from 

the FreeRDP project was modified to support the concept of a central forwarding server.  This 

forwarding server is responsible solely for initial authentication and selection of an appropriate 

RDP backend server; each backend server is then responsible for hosting individual terminal 

sessions.  This architecture alleviates the scalability and reliability concerns typically associated 

with a single terminal server by allowing multiple RDP backend servers to be utilized 

transparently, even though the system only presents a single terminal services address to its 

users.  Cross-session consistency is ensured through the use of the central disk array, which 

stores all user data including each users' desktop configuration files.  Additionally, each login is 

recorded in a dedicated database with all of the pertinent information required to reestablish a 

connection to the backend server, if needed.  This information includes the username, backend 

server, X11 display number, and Process Identifier (PID) of the window manager in control of 

that session.  Upon termination of the window manager, the associated session information is 

removed from the database, and all daemons and processes related to that session are terminated.

Communication between the RDP forwarding server and the RDP backend servers is 

accomplished over three separate channels.  Control of the RDP backend servers is handled via 

passwordless secure shell (SSH) commands; the commands originate on the forwarding server in 

response to login and termination requests, and are sent to the appropriate backend server during 

session startup and teardown.  RDP video and input device actions are handled via an xrdp 
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session stream, with the forwarding server acting as a simple router, ensuring that each stream is 

routed from the appropriate RDP backend server to its attached remote client.  Audio is handled 

in a third PulseAudio stream. Each terminal session executes an independent PulseAudio server; 

this server then captures all sounds generated within the active session, and transmits the 

resultant audio stream to the RDP forwarding daemon for subsequent transmission to the client. 

While portions of this architecture were present as legacy code within the xrdp project, the 

original intent of that code appears to be separation of a single forwarder and single backend 

server.  A significant amount of work on the xrdp codebase was required to make the 

aforementioned design work reliably and to incorporate much-needed features, such as remotely 

commanded termination of active sessions and tracking of active-connected versus active-

disconnected sessions.  The final design of this component is shown in Figure 4.

Desktop Environment

Linux provides a wide variety of desktop environments to choose from; therefore, 

selection of an appropriate environment that will both enable complex engineering tasks and 

function well over RDP is critical.  The two most widely available desktops, as of this writing, 

are KDE [74] v4.x and Gnome [75] v3.x; however, neither of these is suitable for use over RDP 

for a number of reasons.  Both rely heavily on OpenGL and raw CPU power for “eye candy” 

(graphical effects that primarily serve to entertain the user); because the terminal servers do not 

contain graphics cards to enable accelerated OpenGL, severe performance penalties would be 

incurred by its continual use.  Although KDE contains an OpenGL-free compatibility mode, it is 
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built on top of the Qt v4.x toolkit, which does not perform well over remote desktop links. 

Furthermore, both desktops are built around a concept generally referred to as the “semantic 

desktop”; this concept primarily is designed for personal information management and retrieval. 

The search and indexing tools on which the semantic desktop is built also require a fair amount 

of CPU power and memory to function properly, and the desktop environment will not function 

correctly without them.  Supporting the maximum number of users on a given terminal services 

node requires that all sources of replicated bloat, that is, any unneeded CPU and memory usage 

caused by a single user session, must be carefully controlled.  In the author's opinion, neither 

KDE nor Gnome is a suitable candidate for use with the new remote laboratory system, since 

both inherently use non-trivial amounts of CPU and memory per session for functions that do not 

enhance the overall laboratory experience.

Fortunately, there are several less popular, non-semantic, WIMP desktops from which to 

choose, including LXDE [76], XFCE [77], Cinnamon [78], and TDE [79].  All are reasonable 

choices for inclusion in a remote laboratory; however, TDE was chosen due to both its unique 

feature set and the author's familiarity with the TDE desktop environment.  In the author's 

opinion, LXDE and XFCE are too light on features to be chosen if another reasonable alternative 

is present; also, they, together with Cinnamon, suffer from a somewhat complex, confusing 

programming style and set of Application Programming Interfaces (APIs).  Because all three 

desktops are based on the Gimp Toolkit (GTK) [80], programs written in the competing Qt [81] 

toolkit do not integrate well with any of these desktop environments, and vice versa.  Therefore, 

providing a consistent user experience practically mandates the use of the native programming 

toolkit of the desktop environment in use; where workarounds do exist for other desktops, they 
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generally consist of complex and largely unsupported pieces of software.  By contrast, TDE is 

built on the older Qt v3.x toolkit, which, despite its age, not only works efficiently over RDP and 

XDMCP links but also presents a reasonably powerful programming style and set of APIs to the 

developer, thus making it the best choice for the uLab system.

Software Packages

The desktop environment in use is only one consideration in providing a full-featured 

laboratory workspace for the student.  Careful attention must be given to the applications that are 

made available to the user; for a computer engineering laboratory to be successful, a wide variety 

of design tools must be installed.  Broad categories include: software development tools, 

hardware development tools, hardware simulation tools, office and graphics tools, and remote-

hardware access tools.  In the uLab system, the first category is populated with FOSS programs, 

such as Kdevelop [82], Eclipse [83], gcc [84], and similar utilities, with no need to resort to 

proprietary or closed-source tools of any type.  Hardware development tools are a different 

matter, as discussed earlier; in particular, FPGA design tools, such as Xilinx's ISE, are only 

available as closed-source bundles from the FPGA's manufacturer.  However, a few notable 

exceptions to this general rule exist, such as gEDA [85] and LibreCAD [86].  The new remote 

laboratory also includes closed-source freeware, such as LASI, an integrated circuit design 

package.  Hardware simulation tools include KPicoSim, a FOSS Picoblaze simulator, and 

LTSpice, an excellent closed-source SPICE-based circuit simulator.  Office and graphical tools 

are provided through the comprehensive FOSS LibreOffice suite, with advanced graphics 
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handled through the inclusion of GIMP [87], another excellent FOSS program.  Finally, a means 

of accessing the hardware of the remote laboratory must be provided; in the uLab system, this is 

handled via the inclusion of the uLab remote client, as detailed in a later section.

User Data Storage

All of the tools listed above require read-write access to a significant amount of 

permanent storage, as does the desktop environment itself.  Following UNIX tradition, each user 

is given a home directory, which resides on the central disk array.  Each user has full read-write 

access to this directory, and is expected to properly organize his or her files within this space.  It 

may be advantageous to provide each user with read-only or write-once access to certain other 

paths, with the former being useful for provision of a central course documents area, and the 

latter being useful as a digital drop box that relies on the file creation date to timestamp 

submission of the dropped file.  Furthermore, a collaborative area also could be provided via the 

use of POSIX groups; by adding each user to course-specific groups, then providing a set of 

directories with group read-write permissions for each, students who are members of particular 

classes could view and modify each other's files in course-related directories.  This feature would 

be useful in a course, such as Introduction to Engineering, which includes development of 

collaborative ability in its desired outcomes.
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Final Design

The final design of the uLab system adds one diskless terminal server node 

(node001.cluster90.edu) to the cluster, and installs the RDP forwarder on the central server 

(master001.cluster90.edu).  In addition, the following software packages are installed because of 

this particular laboratory's focus on computer engineering and FPGA-based hardware design:

• TDE

• QtOctave

• WXMaxima

• KPicoSim

• LTSpice

• gEDA

• LASI

• Xilinx ISE

• Xilinx EDK

• LibreOffice

• GIMP

• uLab Client
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Scalability and Reliability

Scalability in this portion of the system primarily is limited by the RDP forwarder itself. 

The scalability may be increased by utilizing multiple RDP forwarder servers, with a specific 

forwarder being selected on initial user connection through round-robin DNS or a similar load-

balancing scheme.  All other aspects of the terminal services component should scale linearly 

with the number of available terminal service nodes.  From a reliability standpoint, the RDP 

forwarder servers present single points of failure with the potential to disconnect large numbers 

of students if one or more of the servers were to fail.  Although the students' sessions would 

continue to run on the RDP backend nodes, students would need to reconnect through a different 

RDP forwarder in order to reestablish a connection to their sessions.  This process should be 

handled transparently by the load balancing scheme in use; however, there would be an 

undesirable, although transient, interruption of the users' sessions upon RDP forwarder failure. 

Failure of a single terminal service node is less catastrophic on a global level, although more 

serious on a local level.  If a terminal service node were to fail, all connected users would have 

their sessions immediately terminated, potentially losing data in the process.  In many respects, 

this would have the same user-visible effects as if someone had pulled the power cord on a stand-

alone desktop system.  However, unlike an XRDP forwarder failure, a terminal service node 

failure only would affect a small number of users.  Therefore, it is recommended that the XRDP 

forwarder utilize high-availability hardware, whereas the XRDP backend servers may utilize less 

reliable–although much more powerful–hardware that is suitable for the computationally 

demanding loads encountered.
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uLab Remote Hardware Access System

The third and final portion of the new remote laboratory system is the software that 

enables direct access to laboratory hardware.  Because the students will be using this portion of 

the remote laboratory as a substitute for direct, hands-on access to laboratory hardware, careful 

thought was given to the design of this component.  Additionally, because a wide range of 

laboratory hardware is available, hardware-specific servers and client components were utilized 

where possible.  The overarching concerns of scalability, reliability, and security are no less 

relevant here than elsewhere within the system; as such, the fundamental architecture of the 

hardware-access system is designed to reflect these goals.

Design goals for the uLab remote hardware-access system include modularity, intuitive 

GUI controls, user access control, encrypted links, scalability, reliability, and low cost.  The 

system allows third parties to easily develop new hardware interface servers and related GUI 

clients, thereby allowing new hardware devices to be provided with appropriate GUI interfaces 

within the hardware-access software.  Another major goal of the new hardware-access system is 

to break the observed reliance on closed-source software, such as LabView, and, therefore, to 

provide a complete open-source solution from the uLab client GUI all the way down to the 

physical hardware devices within the laboratory.  A final goal is to utilize inexpensive, open-

source, hardware-interface computers instead of the previously utilized proprietary hardware-

interface cards and machines.  The hardware-interface computers usually are one of the most 

expensive components of the laboratory, along with the laboratory hardware itself, simply 

because of the number of interface computers required to support any significant number of 
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simultaneous users of the remote laboratory.  Usage of inexpensive, open-source hardware for 

the hardware-interface computers is, therefore, highly desirable, especially in education where 

peak simultaneous users likely will be relatively high when compared with the average number 

of simultaneous users.

Authentication, Authorization, and Encryption

To accomplish the stated design goals, the hardware access system utilizes Kerberos 

extensively.  A central arbiter daemon provides a uLab Kerberos service, and each client 

(including hardware-interface servers) must present a valid Kerberos ticket on initial connection. 

Upon successful Kerberos authentication, the communications channel immediately is switched 

to encrypted mode for security purposes.  The lowest levels of this functionality are broken out 

into a new library (tdekrb) that provides an easy-to-use, frame-based data transfer method to 

higher-level applications while transparently handling Kerberos-based authentication and 

channel encryption.  The use of Kerberos tickets in this application ensures that the hardware-

access client can utilize the credentials provided on initial login, thus avoiding the need for the 

user to re-enter login credentials when starting the hardware-access client.  If the user does not 

log on via the provided terminal services, then he or she will need to request a valid Kerberos 

ticket before being allowed to use the remote-hardware services.

The central arbiter utilizes a MySQL database to store its configuration information.  As 

such, it also reads a small configuration file on initial startup to obtain database login credentials 

and its Kerberos service name; the former is required because MySQL lacks Kerberos integration 
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at the time of this writing.  The preferred solution is for the arbiter to authenticate to MySQL 

through GSSAPI, and this should be implemented once support is available in either MySQL or 

the newer MariaDB packages.  The configuration database contains information on each 

available workspace, including type, hosts and services, the client part associated with each 

service, workspace access control, and active workspace reservations.  The central arbiter checks 

each authenticated, incoming service-access request against the permissions database to ensure 

that only authenticated users are allowed to access the hardware-access daemons for which they 

have permission.  Upon detection of a request to access a disallowed resource, an authorization 

failure message is sent and the connection is terminated immediately; this happens without 

establishment of a connection to the requested hardware access daemon.  This process effectively 

prevents an anonymous Distributed Denial of Service (DDoS) attack against the hardware-access 

servers themselves.

Hardware-access servers utilize the same authentication methods and encrypted links as 

the hardware-access client; therefore, the hardware-access servers can be placed safely away 

from the remote laboratory cluster if desired.  The central arbiter utilizes a persistent, non-

expiring Kerberos ticket to identify itself to each hardware-access server; this prevents a rogue or 

malicious arbiter from utilizing hardware resources to which it has not been granted access.  If a 

hardware-access server becomes compromised, the damage would be limited to any directly 

connected hardware and/or the hardware-access server itself, presenting, in the worst case, an 

effective Denial of Service (DoS) attack against a single laboratory workspace.  This design 

allows inexpensive hardware-interface servers to be placed directly on site, for example where 

bulky or sensitive equipment is present; in extreme cases, this could allow laboratory hardware 
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located on the other side of the world to be safely and securely utilized by users of a given 

remote laboratory cluster.

Client Design

The hardware-access client is primarily a container application into which GUI client 

“parts” can be inserted.  The container provides an MDI container window and status bar; the 

latter may be changed by the active client part to present informative status messages to the user. 

Additionally, toolbars and menus are provided from which installed GUI parts may be launched 

as desired.  These toolbar buttons and menu items automatically change, based on the type of 

remote workspace the user has selected; for example, an FPGA development workspace might 

show the FPGA programmer and FPGA viewer parts, while a process-control workspace might 

show sensor plotter and PLC programmer parts.  Each part communicates with the central 

arbiter, utilizing a rigidly defined protocol.  If the client part is authorized to use the requested 

hardware on initial connection, then the central arbiter contacts the appropriate hardware-access 

server and routes the client connection to that server.  This architecture allows multiple, identical 

workspaces to be provided within a given laboratory with the system, not the user, deciding 

which particular workspace will be utilized for a given connection; this type of architecture 

provides redundancy and masks from the end user any potential hardware-access server failures.

The client MDI container handles initial connection to the central arbiter, and on initial 

connection receives a list of available workspace types to which the user has been granted 

access.  It presents this list to the user; then, after the user selects a workspace type, the client 
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MDI container requests a workspace reservation, matching the selected type, from the central 

arbiter.  If all workstations of that type are in use, the central arbiter will respond with a busy 

code, and the client will prompt the user to try again later.  Otherwise, a reservation for a specific 

workspace of the selected type is entered into the system, and will remain valid until the initial 

connection to the arbiter has been terminated, either through a client-initiated disconnection or 

through the action of a laboratory manager.  The central arbiter keeps track of these reservations 

and, on establishment of a connection by a client part, will ensure that the reserved workspace 

receives the client part's connection request.  The client MDI container is designed to take a 

single command line parameter that specifies the DNS address of the central arbiter of the 

cluster; this can be used to hide the implementation details from the user and present an “instant-

on” hardware-access interface when used with existing Kerberos tickets from the initial login.  If 

this command line parameter is missing, the client will prompt for the address of the central 

arbiter to which it should connect and authenticate.  All of these details are hidden from the client 

parts, simplifying development of new client parts and ensuring that system security is 

maintained at all times.  An active session with multiple active client parts is shown in Figure 5.

Server Design

Each client part connects to a specific hardware-access daemon that runs on a hardware-

access server.  In turn, each hardware-access daemon is assigned a specific port on a given host; 

this architecture allows one workspace to be assembled from either one server running one or 

more hardware-access daemons, or from multiple hardware-access servers, each running one or 
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more access daemons.  Each access daemon opens a Kerberized server socket and expects 

connections to be made from the central arbiter; if the provided Kerberos credentials do not 

match the known arbiter credentials, the connection is immediately terminated.  As with the 

central arbiter, each hardware-access daemon follows a strict protocol for identification and 

connection setup; after this process is completed, arbitrary data may be transmitted between the 

client part and the hardware access daemon until the connection is terminated.

Protocol Design

The protocol between the arbiter and either clients or hardware-access servers is rigidly 

defined to ensure that clients and the arbiter are able to quickly establish and verify functionality 

of new connections.  Although the authoritative protocol definition is provided in a document 

within the Git [88] tree of the uLab system, this section will give an overview of the protocol and 

the design decisions that influenced its final form.  It was realized early on that some form of 

frame-based transfer would be needed, as most experiments produce somewhat packeted data, 

such as related groups of instrument readings, that cannot be processed reliably or displayed until 

the entire data chunk has been received.  Furthermore, usage of the encryption system provided 

by SASL strips away any packet-length information that normally would be present if the 

underlying TCP/IP protocol were directly utilized; therefore, the decision was made to sacrifice a 

single bit of every byte to control characters, such as the end of frame indicator, through the use 

of Base64 encoding.  In practice, given the relatively small bandwidth of the hardware-access 

data streams as compared with other services, such as the terminal servers, the 12.5% bandwidth 
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loss to this encoding scheme is insignificant.  Using frame-based transfer ensures that all the 

requisite data arrives before the client part begins to process it, increasing reliability and 

eliminating a major source of network-related deadlocks.  Usage of this protocol is mandatory 

because the central arbiter decrypts all incoming streams and re-encrypts them using its own 

keys; this process slightly enhances security by not allowing the clients to access cryptographic 

material related to the hardware-access servers, and vice versa.

In an effort to make development of new client parts and hardware-access daemons as 

easy as possible, the TQt-specific TQDataStream class was utilized extensively throughout the 

hardware-access system.  This class enables transmission and reception of TQt objects, such as 

TQString and TQByteArray, with a single line of C++ code, enhancing code readability and 

simplifying development.  If access is needed from a different toolkit, the data structures sent and 

received by the TQDataStream class are well documented, and the appropriate interface code 

could be written as needed.  The binary stream input and output of each TQDataStream class is 

connected with the tdekrb library, which handles encryption, framing, and raw network 

input/output, as detailed above and illustrated in Figure 6.  Usage of this class allows network 

operations to be treated as a simple passing of objects between the server and client, thereby 

hiding much of the underlying complexity of the hardware-access network protocol from the 

application developer.  While usage of a TQDataStream-based protocol is strongly encouraged, 

its usage is not mandated past initial connection establishment between a client part and its 

associated hardware-access daemon.  If desired, any binary protocol may be substituted once an 

initial connection has been fully established; it also may be utilized without interference from the 

arbiter until that particular connection is terminated for any reason.
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Figure 6: Hardware access protocol encapsulation for transmission over unsecured networks
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The hardware-access system currently includes several client parts and hardware-access 

daemons that will find use in most electrical engineering laboratories.  A GPIB-based 

oscilloscope and spectrum analyzer part is provided, along with an I2C sensor plotter part.  All 

three parts allow export of captured data to external files for later analysis, and import of external 

data files for viewing.  FPGA access is included via two parts, one for programming the FPGA 

and one for interacting with the design after it has been loaded into the laboratory hardware.  On 

the management end, two parts have been provided: one to manage authenticated user access 

permissions, and one to view and control both active terminal service and active workspace 

users.  The latter part, in particular, allows a laboratory manager to set session timeouts and even 

disconnect users that have, for example, been idle for too long or who might not be using 

laboratory resources in accordance with an institution-specific acceptable use policy.  Following 

UNIX tradition, each part has been designed to do one thing and to do it well.  This separation of 

duties not only allows the maintainer of each part to stay within his or her area(s) of expertise, 

but also has the effect of dividing loosely related functions into separate GUI windows.  For 

example, the FPGA programmer is separate from the FPGA viewer, allowing the programmer to 

be minimized or obscured when testing the FPGA, and vice versa.  Alternatively, on large 

screens, both may be visible at the same time, with the user choosing where each part should be 

located on his or her screen for maximum usability and efficiency.  By following this UNIX 

tradition, the user is granted more control over how he or she sets up and uses his or her 

workspace.
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Test Equipment Interface

The GPIB interface part, unlike its distant predecessor utilized in the RemoteFPGA 

system [42], handles all display and processing of the raw instrument data on the client end.  This 

increases responsiveness and enables real-time operation; unlike the older system, which 

captured raw screen shots of the instrument displays, the uLab system essentially comprises a 

complete instrumentation front end, similar to the interfaces that have been integrated with stand-

alone test equipment since the beginning of the digital test equipment era.  This allows the 

backend test equipment in use to be fully abstracted from the user; aside from various hardware-

driven specifications, such as number of traces and bandwidth, each major type of test equipment 

added to the system will present the same generic graphical interface to the user.  This also 

enables the possibility of using “headless” test equipment, such as some of the more recent PC-

based oscilloscopes that do not contain a display or physical keypad, in the laboratory to reduce 

overall cost.  In addition, it also enables the repurposing of specialized hardware for more 

general purposes without the added complexity this often brings; for example, the spectrum 

analyzer server included in the uLab software package interfaces with an Agilent CDMA test set, 

allowing use of the spectrum analyzer functionality buried within that specialized equipment 

without requiring the user to first understand how to operate the basic functions of the test set. 

The oscilloscope part is shown in Figure 7; this image was taken while using the author's four-

channel, GPIB-capable Tektronix oscilloscope to capture and analyze a high-voltage transient.

It should be noted that the general principles discussed herein are not only applicable to 

GPIB.  The author had a need to access GPIB-based test equipment at this time of this writing, 
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hence the inclusion of GPIB-access daemons in the uLab software, but the principles 

documented above are applicable to newer interfaces as well.  As long as the manufacturer 

provides a programming reference manual that is not protected by a non-disclosure agreement 

(NDA) or similar legal instrument, new backend server daemons can be written to interface with 

test equipment over almost any hardware interface.  In fact, the provided GUI client parts may be 

used with new backend daemons utilizing a non-GPIB hardware interface.  Special effort was 

made to ensure that the test equipment client parts use a generic protocol that should be 

applicable to all test equipment within a particular class; therefore, for example, the oscilloscope 

client part and protocol should be usable with any type of oscilloscope backend interface 

daemon.  GPIB interfaces were implemented primarily because of the low cost of GPIB-enabled 

test equipment, the fact that a GPIB interface is all that typically is required to obtain adequate 

functionality from oscilloscopes and other signal analyzers, and the fact that most GPIB-enabled 

equipment manufacturers freely provide protocol documentation for those instruments.  Newer 

equipment interfaces, such as USB, tend to be far more restricted and poorly documented, if 

publicly documented at all; this may be part of an effort to force the acquisition of expensive 

interface software licenses, simple oversight on the part of equipment manufacturers, or some 

combination of both.  Regardless of motives, this effectively prevents usage of new, low-end test 

equipment from certain manufacturers in a laboratory of this type.  Fortunately VXI-11, a 

relatively new, publicly documented industry standard [89], is coming into use by major 

corporations, such as Tektronix, LeCroy, and Agilent.  Additionally, an open-source Linux library 

supporting this protocol is available for use [90].  VXI-11 is effectively a full, proper 

replacement for GPIB, utilizing Ethernet connectivity and providing a fully documented 
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command-based interface to the test equipment.  The author recommends that only GPIB,

VXI-11, or similarly fully open and documented equipment be utilized in new remote access 

laboratories, as this will not only ensure reliable operation of the resultant laboratory, but also 

will send a strong message to test equipment manufacturers regarding the continuing need for 

open-protocol access to test equipment.

FPGA Viewer Part

Because this particular laboratory will be used primarily for FPGA design, the 

architecture of the FPGA viewer part will be discussed.  The FPGA viewer is essentially a full 

rewrite and extension of the original FPGA remote access solution created by the author and 

deployed in 2009 at NIU [42].  It uses a hardware abstraction module, contained within the 

students' FPGA design, that interacts with a given set of signals.  This abstraction module then 

transmits current signal levels to the hardware-access server via a standard serial link, while 

allowing a second set of signals to be controlled by the hardware-access server via the same 

serial link.  The hardware-access server forwards this basic serial communication protocol over 

the network to the client part, which then interprets the data and displays the current status of the 

virtual lights, switches, and displays.  The abstraction module also includes the ability to read 

and write to either internal block RAM or external SRAM; when interfaced with the client part, 

this allows block-data-based algorithms, such as image processing, to be implemented on the 

FPGA, then to be tested easily using the FPGA viewer client part.  A final feature, implemented 

within the client part itself, is the ability to run a batch test and record the results.  This batch-test 
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feature takes a list of inputs from a simple text file, sequentially applies them to the 16-bit data 

bus, and records the results in a second text file.  The hardware abstraction module itself did not 

need alteration to work with the newly rewritten hardware-access daemon and client part; 

therefore, it is the only portion of the original remote access solution still in use as of this 

writing.  The internal architecture of this FPGA debug module is shown in Figure 8.

While the FPGA interface could be implemented with a second, dedicated FPGA, or 

possibly even utilizing JTAG to directly read and set FPGA pin states, the described solution 

contains several benefits when compared to these other alternatives.  A second, dedicated host 

FPGA would both add expense to the system and require a rich interconnect to the target in order 

to be useful.  Even more problematic, JTAG pin commands are not standardized across FPGA 

manufacturers, or even FPGA types, and are often considered trade-secret or proprietary 

information.  By contrast, the described access solution allows abstraction of many different 

FPGA types because it does not utilize any external pins to link with the user's hardware design; 

stated another way, the user can create a generic FPGA hardware design and rely on the 

hardware abstraction module for all input/output.  This access method also allows the creation of 

virtual hardware resources; for example, the provided module emulates both an LCD display and 

a 7-segment LED display, allowing the student to learn about both display types and, in fact, to 

design hardware that is capable of driving them, without requiring a physical 7-segment or LCD 

display to be attached to the FPGA hardware.  The results of driving the provided interface 

signals are displayed in real time on the FPGA viewer client part, as if the student were 

observing a physical display on a development board in the laboratory.



58

F
ig

ur
e 

8:
 F

P
G

A
 d

eb
ug

 m
od

ul
e 

in
te

rn
al

 s
tr

uc
tu

re



59

FPGA Programmer Part

The FPGA programmer is a radical departure from previous methods.  Prior to this 

remote laboratory, the author was forced to use Xilinx's iMPACT CableServer running on 

dedicated i386 machines with no encryption or access control.  Furthermore, this original system 

required the use of expensive, Xilinx-specific programming cables and pods to function.  Much 

of this was due to the obscurity of the JTAG commands needed to program a .bit file into a 

Xilinx FPGA; the iMPACT software was the only widely known software package able to 

properly program the FPGA.  Since then, the author has become aware of a small suite of tools 

which can convert the .bit file into a series of JTAG instructions contained within a Serial Vector 

Format (SVF) file.  The SVF file can, in turn, be “played,” or its instructions executed, over a 

JTAG link, via a small open-source SVF player application.  These two applications provided the 

first hints that the prior dependency on the closed-source Xilinx programmer could be broken; 

however, an expensive JTAG pod and i386 machine still are needed to make this solution work.

Late last year, an interesting new development tool, called the Raspberry Pi, became 

widely available.  The Raspberry Pi is a low-cost, low-power, single-board computer built 

around a 600MHz ARM processor.  It provides user-accessible GPIO, two serial ports, two USB 

ports, and a network connection; it also can utilize stock Debian Linux.  Together, these features 

make the Raspberry Pi a nearly perfect hardware interface server [23].  Upon obtaining one of 

these devices, the author ported the SVF player to use the GPIO pins of the Raspberry Pi, then 

connected a Spartan 3 FPGA to the GPIO interface, and was rewarded with a working FPGA 

programming solution that was built entirely on open source.  The open-source .bit to SVF 
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conversion utility was subsequently and rapidly ported to the new Spartan 6 series of FPGAs 

through the use of a standard Spartan 6 FPGA development kit.  Once the Raspberry Pi FPGA 

programmer concept was proven, a simple Kerberized access daemon was written, and its 

associated client part was created.  Afterward, the FPGA viewer was tested over the built-in 

serial port of the Raspberry Pi, proving that the Raspberry Pi can be considered a complete 

replacement for the previously used i386 machines and their associated JTAG interfaces.

The Raspberry Pi allows a complete FPGA hardware-access server and target hardware to 

be contained in a small, low-power package, referred to hereinafter as a “pod.”  These pods can 

be generalized to support any type of hardware, as long as any required interface software can be 

compiled and executed successfully on the ARM architecture.  Due to the small size and low cost 

of each pod, providing sufficient remote hardware resources to accommodate an entire class of 

students should prove both practical and economical.  Furthermore, the fully open-source nature 

of the pods allows customization to suit any needs within a given laboratory, and allows 

immediate patching of any bugs or security holes that may be encountered without having to 

wait for an update from the device manufacturer.  Pods may be either diskless or contain their 

system files on an integrated Secure Digital (SD) card.  Since the FPGA pods in the uLab system 

are contained within the cluster, they have been installed, along with the terminal services, as 

diskless nodes to prevent unnecessary wear and tear on the Flash-based SD cards.  A photograph 

of a single Spartan 6-based pod is shown in Figure 9.  The Raspberry Pi is mounted on top of the 

Spartan 6 development board, with the USB connection to the integrated UART of the FPGA 

visible on the right and the JTAG/power wiring shown in the middle of the photograph.  The 

flying leads terminating on the left side of the photograph are normally used to provide electrical
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power to a second pod, reducing the number of separate power supplies required for the 

laboratory system installed at Northern Illinois University.

Final Design

The final design consists of five Spartan 6-based FPGA development pods 

(pi001.cluster90.edu through pi005.cluster90.edu), with the central arbiter installed on the master 

server (master001.cluster90.edu).  Each pod consists of a diskless Raspberry Pi and a Digilent 

Spartan 6 development board, with the Raspberry Pi taking its 5V power directly from the 

Digilent board.  Each Raspberry Pi utilizes a specially created SD card image that contains a 

read-only boot partition and the requisite kernel command line to enable booting via NFS.  Each 

pod is joined to the Kerberos realm through the use of the TDE Realm Bonding utility, as is the 

machine running the central arbiter.  All services are automatically started on boot via the 

standard Debian startup sequencing (init) system, with time from pod power application to full 

service availability typically several minutes.   Machine startup order is not critical, with the 

exception that the master node (master001.cluster90.edu) be started before any other nodes 

because it contains all of the services needed for diskless client startup and operation.  If diskless 

clients were not utilized, the servers and nodes could be started in any order, although portions of 

the system would remain unavailable until sufficient resources were brought online.
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Scalability and Reliability

Scalability of this final component of the uLab remote laboratory is, like the terminal 

services component, limited primarily by the performance of the central arbiter.  Similar to the 

terminal services discussion, the best solution for mitigating this bottleneck is the provision of 

several arbiters utilizing round-robin DNS or a similar load-balancing scheme.  Because all 

reservation and session information is stored in a central MySQL database, many such arbiters 

may be employed to distribute the network and CPU load across multiple machines.  Each arbiter 

must contain a copy of the central arbiter Kerberos ticket; therefore, each arbiter is a potential 

security risk and must be physically secured against attack.  If any arbiter were to be breached 

and its persistent Kerberos ticket obtained, the attacker would gain access to any hardware-

access servers that originally were linked to that arbiter.  This risk can be mitigated somewhat 

through the use of several unique Kerberos tickets, one for each arbiter.  While this will not be of 

benefit until an attack has been detected, it will prevent the entire system from going offline 

while new Kerberos tickets are generated.  If this scheme is used, the compromised ticket simply 

could have its access revoked on each of the hardware-access servers–without requiring 

revocation of other arbiter tickets and subsequent temporary loss of access from uncompromised 

arbiters.

All other components of the remote hardware access system should scale nearly linearly 

with the number of available hardware-access servers.  If a single pod were to fail, a spare of the 

same type could be brought online and added to the hardware access pool, thereby minimizing 

any user-visible work interruption.  However, if a pod fails, the user will lose all state 
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information from the hardware he or she was previously using; while saved data and displayed 

results would not be affected, this could affect certain types of long-running experiments.  The 

availability level of the pod hardware should, therefore, be matched carefully to the types of 

experiments being run on that particular pod to ensure a satisfactory user experience.  If a central 

arbiter were to fail, the effects would be far more widespread and catastrophic.  All students 

using that arbiter would be disconnected, and all laboratory workspaces to which the arbiter was 

connected would be reset to defaults, with all reservations made through that arbiter being 

immediately released.  To minimize this risk, the central arbiter(s) should be installed on high-

availability hardware that runs a highly stable operating system.

Miscellaneous Services

Several optional components of the system, such as the Xilinx ISE/EDK and MATLAB, 

require a dedicated license server in order to function correctly with floating licenses.  This 

license server, if needed, should be installed in a dedicated virtual machine that runs one of the 

manufacturer-supported Linux distribution versions.  VirtualBox [91] is an excellent open-source 

virtualization solution, and is recommended as the virtualization host.  Similar to other central 

points of failure, if the license server were to fail, students would be unable to access any 

software packages that relied on it.  Consequently, high-availability hardware should be used to 

support the virtualization host; in the final laboratory design, the ideal host is the master server 

(master001.cluster90.edu), although larger installations may see improved performance if a 

single high-availability machine is dedicated as a virtualization host.   It is strongly 
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recommended, although not required, that a physical network port be dedicated to the license 

server's virtual machine; this ensures that the MAC address of the license server is never 

confused with the MAC address of the host machine, and makes replacement of failed host 

hardware somewhat easier.



DISCUSSION AND SUMMARY

Because a major goal of this research is not only to prove that a fully open-source remote 

laboratory can, in fact, be built, but also to ensure the sustainability of such an environment for 

multiple institutions to use, all source code written for the uLab system has been released in a set 

of Git trees.  At the time of this writing, the uLab system uses donated space in the TDE project's 

infrastructure for bug tracking and patch submission; however, this may change in the future as 

the project grows more popular and more individuals begin to contribute code and resources.  As 

of this writing, project code repositories are available at http://ulab.trinitydesktop.org; 

authoritative protocol documentation for developers also is included in a text file within the 

hardware-access package Git tree.  Additionally, a highly condensed set of installation 

instructions for a lab using the design detailed herein is available at the same location.  These 

instructions are designed to be read and understood by a Linux system administrator or similarly 

qualified individual, and assume familiarity with UNIX-like systems, the Linux command line, 

and various configuration files for several software packages.  The aforementioned Kerberos 

realm setup and management tools have been integrated into the TDE project at 

http://www.trinitydesktop.org, and therefore are available in both source and binary form for 

TDE R14.0.0 and above.

This research largely accomplished its original goals, described at the beginning of this 

work; a functional, secure remote laboratory has been built on fully open-source software that 

also can support proprietary tools where needed, such as those required for FPGA synthesis and 

http://ulab.trinitydesktop.org/
http://www.trinitydesktop.org/
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for FPGA routing.  Direct access to dedicated hardware is provided through the use of the uLab 

client container, which hosts client parts tailored to the needs of particular hardware types. 

Inexpensive laboratory hardware “pods” were created to make deployment of a large laboratory 

economical and practical; five of these pods were installed in the laboratory at Northern Illinois 

University.  All pods host Spartan 6 FPGA development boards sourced from Digilent, Inc.  A 

single terminal services node with 12 Opteron cores and 24GB of memory was installed in the 

laboratory, and remote desktop functionality, including Kerberos-based single sign-on, was 

verified.  Finally, the new Kerberos realm control tools and other infrastructure components were 

installed on two dedicated servers, and full functionality of the infrastructure components, 

including the disk-related Infiniband links, was verified.  Link speed was identified as a critical 

parameter, and students with downstream link speeds below approximately 3Mbps may 

experience difficulty using the remote laboratory.  This may be optimized in the future as the 

FreeRDP project continues to work on the xrdp servers; however, further research needs to be 

done to identify the source of observed bandwidth surges and related interface stalls on slower 

connections.  A block diagram of the completed laboratory, as installed at Northern Illinois 

University, is shown in Figure 10, and a photograph of this laboratory in its native environment 

is shown in Figure 11.

Future Work

While a capable remote laboratory system, fully usable for remote FPGA development, 

has been presented, there are several opportunities for enhancement present within the uLab
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Figure 11: uLab installation at Northern Illinois University



71

system at the time of this writing.  The laboratory, as currently installed at Northern Illinois 

University, does not include signal generation or waveform capture equipment; future 

development should concentrate on the creation and interfacing of a fully open-source and open-

hardware oscilloscope pod.  The author is aware of at least one FPGA-based oscilloscope project 

which fits these criteria; a developer interested in accomplishing this task would need to create 

the interface daemon between the oscilloscope module and the uLab Kerberized network.  The 

existing GPIB interface server can be utilized as a template to reduce the overall work needed to 

create the interface server, while the client part should need no modification, as discussed earlier. 

In a similar manner, a fully open-source and open-hardware signal generator pod may be created, 

although such a pod will require the writing of an interface daemon and a client part, since no 

client part currently exists for a signal generation tool.  Both pods preferably would utilize a 

Raspberry Pi as the test-module-to-network interface in order to lower overall laboratory cost 

and power consumption.

A touch screen was specified for eventual use in the laboratory in order to provide a 

simple interface that could be used by a laboratory manager to accomplish basic management 

tasks, such as viewing the laboratory state, terminating user sessions if necessary, and marking 

machines and pods as online or offline.  This interface was not developed as part of this thesis; 

therefore, it presents an opportunity for anyone interested in touch-based interfaces, namely to 

create a functional and efficient laboratory management system.  It should be noted that the use 

of touch in this area is not in conflict with previous statements related to the superiority of 

mouse-and-keyboard driven interfaces for engineering; rather, laboratory management, as with 

other industrial control and automation applications, is simply an area in which the high I/O 
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bandwidth of a mouse-and-keyboard-driven interface is not required.  This touchscreen interface 

should run on a dedicated, low-power system, such as the Raspberry Pi, and utilize a secure form 

of passwordless, Kereberized authentication, such as that provided by SmartCards and their 

readers.  Since TDE includes software to handle SmartCard logins, the existing TDE-based 

functionality simply could be extended as needed to accomplish this goal.  It should be noted that 

the usage of an on-screen keyboard or any other means of on-screen authentication data entry is 

inherently insecure and should be avoided wherever possible.

Another area of possible future work relates to the integration of the uLab system with 

electromechanical laboratories, such as an electrodynamics laboratory.  An interface pod could 

be used to control motors, switch gear, and other equipment in such a laboratory, while the 

oscilloscope pods, mentioned earlier, could be used as monitors.  Where needed, standard GPIB-

based test equipment, such as multimeters, could be added to the system via appropriate interface 

daemons and client parts.  Video feeds of running electrodynamics experiments could be 

provided via a standard USB UVC-compatible webcam; this would require a dedicated camera 

interface daemon using V4L2 and a new client part for viewing video and audio.

A final area of possible enhancement relates to collaborative tasks on the remote 

laboratory system.  It may be advantageous to provide a means for instructors to interact directly 

with their students in real time; such interaction could take the form of IRC chat, collaborative 

document editing, such as that available through an Etherpad instance, or even 

videoconferencing if link bandwidth is sufficient.  All of these potential interaction methods are 

available through the use of existing open-source software; therefore, installing them should be a 

relatively simple matter.  Once installed, however, they should be integrated with the Kerberos 
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realm in such a way as to retain the single sign-on experience, and must also be secured and 

encrypted to ensure that eavesdropping, spoofing, spamming, or malicious destruction of data 

cannot occur.
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